230 research outputs found

    Robust, data-driven inference in non-linear cosmostatistics

    Full text link
    We discuss two projects in non-linear cosmostatistics applicable to very large surveys of galaxies. The first is a Bayesian reconstruction of galaxy redshifts and their number density distribution from approximate, photometric redshift data. The second focuses on cosmic voids and uses them to construct cosmic spheres that allow reconstructing the expansion history of the Universe using the Alcock-Paczynski test. In both cases we find that non-linearities enable the methods or enhance the results: non-linear gravitational evolution creates voids and our photo-z reconstruction works best in the highest density (and hence most non-linear) portions of our simulations.Comment: 14 pages, 10 figures. Talk given at "Statistical Challenges in Modern Astronomy V," held at Penn Stat

    Linearisation with Cosmological Perturbation Theory

    Full text link
    We propose a new method to linearise cosmological mass density fields using higher order Lagrangian perturbation theory (LPT). We demonstrate that a given density field can be expressed as the sum of a linear and a nonlinear component which are tightly coupled to each other by the tidal field tensor within the LPT framework. The linear component corresponds to the initial density field in Eulerian coordinates, and its mean relation with the total field can be approximated by a logarithm (giving theoretical support to recent attempts to find such component). We also propose to use a combination of the linearisation method and the continuity equation to find the mapping between Eulerian and Lagrangian coordinates. In addition, we note that this method opens the possibility of use directly higher order LPT on nonlinear fields. We test our linearization scheme by applying it to the z~0.5 density field from an N-body simulation. We find that the linearised version of the full density field can be successfully recovered on >~5 h^{-1}Mpc, reducing the skewness and kurtosis of the distribution by about one and two orders of magnitude, respectively. This component can also be successfully traced back in time, converging towards the initial unevolved density field at z~100. We anticipate a number of applications of our results, from predicting velocity fields to estimates of the initial conditions of the universe, passing by improved constraints on cosmological parameters derived from galaxy clustering via reconstruction methods.Comment: 14 pages, 8 figure

    Scalar dark matter vortex stabilization with black holes

    Full text link
    Galaxies and their dark-matter halos are commonly presupposed to spin. But it is an open question how this spin manifests in halos and soliton cores made of scalar dark matter (SDM, including fuzzy/wave/ultralight-axion dark matter). One way spin could manifest in a necessarily irrotational SDM velocity field is with a vortex. But recent results have cast doubt on this scenario, finding that vortices are generally unstable except with substantial repulsive self-interaction. In this paper, we introduce an alternative route to stability: in both (non-relativistic) analytic calculations and simulations, a black hole or other central mass at least as massive as a soliton can stabilize a vortex within it. This conclusion may also apply to AU-scale halos bound to the sun and stellar-mass-scale Bose stars.Comment: Accepted by JCAP. 22 pages, 5 figures. Supplementary animations at https://doi.org/10.5281/zenodo.7675830 or https://www.youtube.com/playlist?list=PLHrf0iQS5SY7Xt2sjqskF3kmHd00Hrdf

    Probing dark energy with cluster counts and cosmic shear power spectra: including the full covariance

    Full text link
    (Abridged) Combining cosmic shear power spectra and cluster counts is powerful to improve cosmological parameter constraints and/or test inherent systematics. However they probe the same cosmic mass density field, if the two are drawn from the same survey region, and therefore the combination may be less powerful than first thought. We investigate the cross-covariance between the cosmic shear power spectra and the cluster counts based on the halo model approach, where the cross-covariance arises from the three-point correlations of the underlying mass density field. Fully taking into account the cross-covariance as well as non-Gaussian errors on the lensing power spectrum covariance, we find a significant cross-correlation between the lensing power spectrum signals at multipoles l~10^3 and the cluster counts containing halos with masses M>10^{14}Msun. Including the cross-covariance for the combined measurement degrades and in some cases improves the total signal-to-noise ratios up to plus or minus 20% relative to when the two are independent. For cosmological parameter determination, the cross-covariance has a smaller effect as a result of working in a multi-dimensional parameter space, implying that the two observables can be considered independent to a good approximation. We also discuss that cluster count experiments using lensing-selected mass peaks could be more complementary to cosmic shear tomography than mass-selected cluster counts of the corresponding mass threshold. Using lensing selected clusters with a realistic usable detection threshold (S/N~6 for a ground-based survey), the uncertainty on each dark energy parameter may be roughly halved by the combined experiments, relative to using the power spectra alone.Comment: 32 pages, 15 figures. Revised version, invited original contribution to gravitational lensing focus issue, New Journal of Physic

    ZOBOV: a parameter-free void-finding algorithm

    Full text link
    ZOBOV (ZOnes Bordering On Voidness) is an algorithm that finds density depressions in a set of points, without any free parameters, or assumptions about shape. It uses the Voronoi tessellation to estimate densities, which it uses to find both voids and subvoids. It also measures probabilities that each void or subvoid arises from Poisson fluctuations. This paper describes the ZOBOV algorithm, and the results from its application to the dark-matter particles in a region of the Millennium Simulation. Additionally, the paper points out an interesting high-density peak in the probability distribution of dark-matter particle densities.Comment: 10 pages, 8 figures, MNRAS, accepted. Added explanatory figures, and better edge-detection methods. ZOBOV code available at http://www.ifa.hawaii.edu/~neyrinck/vobo

    A Dynamical Classification of the Cosmic Web

    Full text link
    A dynamical classification of the cosmic web is proposed. The large scale environment is classified into four web types: voids, sheets, filaments and knots. The classification is based on the evaluation of the deformation tensor, i.e. the Hessian of the gravitational potential, on a grid. The classification is based on counting the number of eigenvalues above a certain threshold, lambda_th at each grid point, where the case of zero, one, two or three such eigenvalues corresponds to void, sheet, filament or a knot grid point. The collection of neighboring grid points, friends-of-friends, of the same web attribute constitutes voids, sheets, filaments and knots as web objects. A simple dynamical consideration suggests that lambda_th should be approximately unity, upon an appropriate scaling of the deformation tensor. The algorithm has been applied and tested against a suite of (dark matter only) cosmological N-body simulations. In particular, the dependence of the volume and mass filling fractions on lambda_th and on the resolution has been calculated for the four web types. Also, the percolation properties of voids and filaments have been studied. Our main findings are: (a) Already at lambda_th = 0.1 the resulting web classification reproduces the visual impression of the cosmic web. (b) Between 0.2 < lambda_th < 0.4, a system of percolated voids coexists with a net of interconected filaments. This suggests a reasonable choice for lambda_th as the parameter that defines the cosmic web. (c) The dynamical nature of the suggested classification provides a robust framework for incorporating environmental information into galaxy formation models, and in particular the semi-analytical ones.Comment: 11 pages, 6 figures, submitted to MNRA

    Thinking Outside the Box: Effects of Modes Larger than the Survey on Matter Power Spectrum Covariance

    Get PDF
    Considering the matter power spectrum covariance matrix, it has recently been found that there is a potentially dominant effect on mildly non-linear scales due to power in modes of size equal to and larger than the survey volume. This {\it beat coupling} effect has been derived analytically in perturbation theory and while it has been tested with simulations, some questions remain unanswered. Moreover, there is an additional effect of these large modes, which has so far not been included in analytic studies, namely the effect on the estimated {\it average} density which enters the power spectrum estimate. In this article, we work out analytic, perturbation theory based expressions including both the beat coupling and this {\it local average effect} and we show that while, when isolated, beat coupling indeed causes large excess covariance in agreement with the literature, in a realistic scenario this is compensated almost entirely by the local average effect, leaving only 10\sim 10 % of the excess. We test our analytic expressions by comparison to a suite of large N-body simulations. For the variances, we find excellent agreement with the analytic expressions for k<0.2hk < 0.2 hMpc1^{-1} at z=0.5z=0.5, while the correlation coefficients agree to beyond k=0.4hk=0.4 hMpc1^{-1}. As expected, the range of agreement increases towards higher redshift and decreases slightly towards z=0z=0. We finish by including the large-mode effects in a full covariance matrix description for arbitrary survey geometry and confirming its validity using simulations. This may be useful as a stepping stone towards building an actual galaxy (or other tracer's) power spectrum covariance matrix. [abridged]Comment: 24 pages, 10 figures. Version accepted for publication in JCAP. Added Figure 5 and Appendix

    Unfolding the Hierarchy of Voids

    Get PDF
    We present a framework for the hierarchical identification and characterization of voids based on the Watershed Void Finder. The Hierarchical Void Finder is based on a generalization of the scale space of a density field invoked in order to trace the hierarchical nature and structure of cosmological voids. At each level of the hierarchy, the watershed transform is used to identify the voids at that particular scale. By identifying the overlapping regions between watershed basins in adjacent levels, the hierarchical void tree is constructed. Applications on a hierarchical Voronoi model and on a set of cosmological simulations illustrate its potential.Comment: 5 pages, 2 figure

    SubHaloes going Notts: The SubHalo-Finder Comparison Project

    Full text link
    We present a detailed comparison of the substructure properties of a single Milky Way sized dark matter halo from the Aquarius suite at five different resolutions, as identified by a variety of different (sub-)halo finders for simulations of cosmic structure formation. These finders span a wide range of techniques and methodologies to extract and quantify substructures within a larger non-homogeneous background density (e.g. a host halo). This includes real-space, phase-space, velocity-space and time- space based finders, as well as finders employing a Voronoi tessellation, friends-of-friends techniques, or refined meshes as the starting point for locating substructure.A common post-processing pipeline was used to uniformly analyse the particle lists provided by each finder. We extract quantitative and comparable measures for the subhaloes, primarily focusing on mass and the peak of the rotation curve for this particular study. We find that all of the finders agree extremely well on the presence and location of substructure and even for properties relating to the inner part part of the subhalo (e.g. the maximum value of the rotation curve). For properties that rely on particles near the outer edge of the subhalo the agreement is at around the 20 per cent level. We find that basic properties (mass, maximum circular velocity) of a subhalo can be reliably recovered if the subhalo contains more than 100 particles although its presence can be reliably inferred for a lower particle number limit of 20. We finally note that the logarithmic slope of the subhalo cumulative number count is remarkably consistent and <1 for all the finders that reached high resolution. If correct, this would indicate that the larger and more massive, respectively, substructures are the most dynamically interesting and that higher levels of the (sub-)subhalo hierarchy become progressively less important.Comment: 16 pages, 7 figures, 2 tables, Accepted for MNRA

    Lung transplantation for acute respiratory distress syndrome:A multicenter experience

    Get PDF
    Acute respiratory distress syndrome (ARDS) is a rapidly progressive lung disease with a high mortality rate. Although lung transplantation (LTx) is a well-established treatment for a variety of chronic pulmonary diseases, LTx for acute lung failure (due to ARDS) remains controversial. We reviewed posttransplant outcome of ARDS patients from three high-volume European transplant centers. Demographics and clinical data were collected and analyzed. Viral infection was the main reason for ARDS (n = 7/13, 53.8%). All patients were admitted to ICU and required mechanical ventilation, 11/13 were supported with ECMO at the time of listing. They were granted a median LAS of 76 (IQR 50-85) and waited for a median of 3 days (IQR 1.5-14). Postoperatively, median length of mechanical ventilation was 33 days (IQR 17-52.5), median length of ICU and hospital stay were 39 days (IQR 19.5-58.5) and 54 days (IQR 43.5-127). Prolongation of peripheral postoperative ECMO was required in 7/13 (53.8%) patients with a median duration of 2 days (IQR 2-7). 30-day mortality was 7.7%, 1 and 5-year survival rates were calculated as 71.6% and 54.2%, respectively. Given the lack of alternative treatment options, the herein presented results support the concept of offering live-saving LTx to carefully selected ARDS patients
    corecore