665 research outputs found

    No local cancellation between directionally opposed first-order and second-order motion signals

    Get PDF
    AbstractDespite strong converging evidence that there are separate mechanisms for the processing of first-order and second-order motion, the issue remains controversial. Qian, Andersen and Adelson (J. Neurosci., 14 (1994), 7357–7366) have shown that first-order motion signals cancel if locally balanced. Here we show that this is also the case for second-order motion signals, but not for a mixture of first-order and second-order motion even when the visibility of the two types of stimulus is equated. Our motion sequence consisted of a dynamic binary noise carrier divided into horizontal strips of equal height, each of which was spatially modulated in either contrast or luminance by a 1.0 c/deg sinusoid. The modulation moved leftward or rightward (3.75 Hz) in alternate strips. The single-interval task was to identify the direction of motion of the central strip. Three conditions were tested: all second-order strips, all first-order strips, and spatially alternated first-order and second-order strips. In the first condition, a threshold strip height for the second-order strips was obtained at a contrast modulation depth of 100%. In the second condition, this height was used for the first-order strips, and a threshold was obtained in terms of luminance contrast. These two previously-obtained threshold values were used to equate visibility of the first-order and second-order components in the third condition. Direction identification, instead of being at threshold, was near-perfect for all observers. We argue that the first two conditions demonstrate local cancellation of motion signals, whereas in the third condition this does not occur. We attribute this non-cancellation to separate processing of first-order and second-order motion inputs

    Scopes Describe Frames: A Uniform Model for Memory Layout in Dynamic Semantics (Artifact)

    Get PDF
    Our paper introduces a systematic approach to the alignment of names in the static structure of a program, and memory layout and access during its execution. We develop a uniform memory model consisting of frames that instantiate the scopes in the scope graph of a program. This provides a language-independent correspondence between static scopes and run-time memory layout, and between static resolution paths and run-time memory access paths. The approach scales to a range of binding features, supports straightforward type soundness proofs, and provides the basis for a language-independent specification of sound reachability-based garbage collection. This Coq artifact showcases how our uniform model for memory layout in dynamic semantics provides structure to type soundness proofs. The artifact contains type soundness proofs mechanized in Coq for (supersets of) all languages in the paper. The type soundness proofs rely on a language-independent framework formalizing scope graphs and frame heaps

    GRB 090426: The Environment of a Rest-Frame 0.35-second Gamma-Ray Burst at Redshift z=2.609

    Get PDF
    We present the discovery of an absorption-line redshift of z = 2.609 for GRB 090426, establishing the first firm lower limit to a redshift for a gamma-ray burst with an observed duration of <2 s. With a rest-frame burst duration of T_90z = 0.35 s and a detailed examination of the peak energy of the event, we suggest that this is likely (at >90% confidence) a member of the short/hard phenomenological class of GRBs. From analysis of the optical-afterglow spectrum we find that the burst originated along a very low HI column density sightline, with N_HI < 3.2 x 10^19 cm^-2. Our GRB 090426 afterglow spectrum also appears to have weaker low-ionisation absorption (Si II, C II) than ~95% of previous afterglow spectra. Finally, we also report the discovery of a blue, very luminous, star-forming putative host galaxy (~2 L*) at a small angular offset from the location of the optical afterglow. We consider the implications of this unique GRB in the context of burst duration classification and our understanding of GRB progenitor scenarios.Comment: Submitted to MNRA

    A pragmatic harm reduction approach to manage a large outbreak of wound botulism in people who inject drugs, Scotland 2015

    Get PDF
    Abstract Background People who inject drugs (PWID) are at an increased risk of wound botulism, a potentially fatal acute paralytic illness. During the first 6 months of 2015, a large outbreak of wound botulism was confirmed among PWID in Scotland, which resulted in the largest outbreak in Europe to date. Methods A multidisciplinary Incident Management Team (IMT) was convened to conduct an outbreak investigation, which consisted of enhanced surveillance of cases in order to characterise risk factors and identify potential sources of infection. Results Between the 24th of December 2014 and the 30th of May 2015, a total of 40 cases were reported across six regions in Scotland. The majority of the cases were male, over 30 and residents in Glasgow. All epidemiological evidence suggested a contaminated batch of heroin or cutting agent as the source of the outbreak. There are significant challenges associated with managing an outbreak among PWID, given their vulnerability and complex addiction needs. Thus, a pragmatic harm reduction approach was adopted which focused on reducing the risk of infection for those who continued to inject and limited consequences for those who got infected. Conclusions The management of this outbreak highlighted the importance and need for pragmatic harm reduction interventions which support the addiction needs of PWID during an outbreak of spore-forming bacteria. Given the scale of this outbreak, the experimental learning gained during this and similar outbreaks involving spore-forming bacteria in the UK was collated into national guidance to improve the management and investigation of future outbreaks among PWID

    Proteomics: in pursuit of effective traumatic brain injury therapeutics

    Get PDF
    Effective traumatic brain injury (TBI) therapeutics remain stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development, as it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Lastly, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for TBI patients

    Informing the design of a national screening and treatment programme for chronic viral hepatitis in primary care: qualitative study of at-risk immigrant communities and healthcare professionals

    Get PDF
    n Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise statedThis paper presents independent research funded by the National Institute for Health Research (NIHR) under the Programme Grants for Applied Research programme (RP-PG-1209-10038).
    corecore