76 research outputs found

    Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra

    Full text link
    [Abridged] We previously presented evidence for a varying fine-structure constant, alpha, in two independent samples of Keck/HIRES QSO spectra. Here we present a detailed many-multiplet analysis of a third Keck/HIRES sample containing 78 absorption systems. We also re-analyse the previous samples, providing a total of 128 absorption systems over the redshift range 0.2<z_abs<3.7. All three samples separately yield consistent, significant values of da/a. The analyses of low- and high-z systems rely on different ions/transitions with very different dependencies on alpha, yet they also give consistent results. We identify additional random errors in 22 high-z systems characterized by transitions with a large dynamic range in apparent optical depth. Increasing the statistical errors on da/a for these systems gives our fiducial result, a weighted mean da/a=(-0.543+/-0.116)x10^-5, representing 4.7-sigma evidence for a smaller weighted mean alpha in the absorption clouds. Assuming that da/a=0 at z_abs=0, the data marginally prefer a linear increase in alpha with time: dota/a=(6.40+/-1.35)x10^-16 yr^-1. The two-point correlation function for alpha is consistent with zero over 0.2-13 Gpc comoving scales and the angular distribution of da/a shows no significant dipolar anisotropy. We therefore have no evidence for spatial variations in da/a. We extend our previous searches for possible systematic errors, identifying atmospheric dispersion and isotopic structure effects as potentially the most significant. However, overall, known systematic errors do not explain the results. Future many-multiplet analyses of QSO spectra from different telescopes and spectrographs will provide a now crucial check on our Keck/HIRES results.Comment: 31 pages, 25 figures (29 EPS files), 8 tables. Accepted by MNRAS. Colour versions of Figs. 6, 8 & 10 and text version of Table 3 available at http://www.ast.cam.ac.uk/~mim/pub.htm

    The Brazilian Developments On The Regional Atmospheric Modeling System (brams 5.2): An Integrated Environmental Model Tuned For Tropical Areas

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS), in which different previous versions for weather, chemistry, and carbon cycle were unified in a single integrated modeling system software. This new version also has a new set of state-of-the-art physical parameterizations and greater computational parallel and memory usage efficiency. The description of the main model features includes several examples illustrating the quality of the transport scheme for scalars, radiative fluxes on surface, and model simulation of rainfall systems over South America at different spatial resolutions using a scale aware convective parameterization. Additionally, the simulation of the diurnal cycle of the convection and carbon dioxide concentration over the Amazon Basin, as well as carbon dioxide fluxes from biogenic processes over a large portion of South America, are shown. Atmospheric chemistry examples show the model performance in simulating near-surface carbon monoxide and ozone in the Amazon Basin and the megacity of Rio de Janeiro. For tracer transport and dispersion, the model capabilities to simulate the volcanic ash 3-D redistribution associated with the eruption of a Chilean volcano are demonstrated. The gain of computational efficiency is described in some detail. BRAMS has been applied for research and operational forecasting mainly in South America. Model results from the operational weather forecast of BRAMS on 5km grid spacing in the Center for Weather Forecasting and Climate Studies, INPE/Brazil, since 2013 are used to quantify the model skill of near-surface variables and rainfall. The scores show the reliability of BRAMS for the tropical and subtropical areas of South America. Requirements for keeping this modeling system competitive regarding both its functionalities and skills are discussed. Finally, we highlight the relevant contribution of this work to building a South American community of model developers. © Author(s) 2017.1011892222014/01563-1, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo2014/01564-8, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo2015/10206-0, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo306340/2011-9, Conselho Nacional de Desenvolvimento Científico e TecnológicoFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale
    • 

    corecore