214 research outputs found

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Measurement of the CP-Violating Asymmetry Amplitude sin2β\beta

    Get PDF
    We present results on time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 88 million Y(4S) --> B Bbar decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B0 or B0bar from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay-time distributions in such events. We measure sin2beta = 0.741 +/- 0.067 (stat) +/- 0.033 (syst) and |lambda| = 0.948 +/- 0.051 (stat) +/- 0.017 (syst). The magnitude of lambda is consistent with unity, in agreement with the Standard Model expectation of no direct CP violation in these modes

    Determination of the Form Factors for the Decay B0 --> D*-l+nu_l and of the CKM Matrix Element |Vcb|

    Get PDF
    We present a combined measurement of the Cabibbo-Kobayashi-Maskawa matrix element Vcb|V_{cb}| and of the parameters ρ2\rho^2, R1R_1, and R2R_2, which fully characterize the form factors of the B0D+νB^0 \to D^{*-}\ell^{+}\nu_\ell decay in the framework of HQET, based on a sample of about 52,800 B0D+νB^0 \to D^{*-}\ell^{+}\nu_\ell decays recorded by the BABAR detector. The kinematical information of the fully reconstructed decay is used to extract the following values for the parameters (where the first errors are statistical and the second systematic): ρ2=1.156±0.094±0.028\rho^2 = 1.156 \pm 0.094 \pm 0.028, R1=1.329±0.131±0.044R_1 = 1.329 \pm 0.131 \pm 0.044, R2=0.859±0.077±0.022R_2 = 0.859 \pm 0.077 \pm 0.022, F(1)Vcb=(35.03±0.39±1.15)×103\mathcal{F}(1)|V_{cb}| = (35.03 \pm 0.39 \pm 1.15) \times 10^{-3}. By combining these measurements with the previous BABAR measurements of the form factors which employs a different technique on a partial sample of the data, we improve the statistical accuracy of the measurement, obtaining: ρ2=1.179±0.048±0.028,R1=1.417±0.061±0.044,R2=0.836±0.037±0.022,\rho^2 = 1.179 \pm 0.048 \pm 0.028, R_1 = 1.417 \pm 0.061 \pm 0.044, R_2 = 0.836 \pm 0.037 \pm 0.022, and F(1)Vcb=(34.68±0.32±1.15)×103. \mathcal{F}(1)|V_{cb}| = (34.68 \pm 0.32 \pm 1.15) \times 10^{-3}. Using the lattice calculations for the axial form factor F(1)\mathcal{F}(1), we extract Vcb=(37.74±0.35±1.25±1.441.23)×103|V_{cb}| =(37.74 \pm 0.35 \pm 1.25 \pm ^{1.23}_{1.44}) \times 10^{-3}, where the third error is due to the uncertainty in F(1)\mathcal{F}(1)

    Study of the Exclusive Initial-State Radiation Production of the DDˉD \bar D System

    Get PDF
    A study of exclusive production of the DDˉD \bar D system through initial-state r adiation is performed in a search for charmonium states, where D=D0D=D^0 or D+D^+. The D0D^0 mesons are reconstructed in the D0Kπ+D^0 \to K^- \pi^+, D0Kπ+π0D^0 \to K^- \pi^+ \pi^0, and D0Kπ+π+πD^0 \to K^- \pi^+ \pi^+ \pi^- decay modes. The D+D^+ is reconstructed through the D+Kπ+π+D^+ \to K^- \pi^+ \pi^+ decay mode. The analysis makes use of an integrated luminosity of 288.5 fb1^{-1} collected by the BaBar experiment. The DDˉD \bar D mass spectrum shows a clear ψ(3770)\psi(3770) signal. Further structures appear in the 3.9 and 4.1 GeV/c2c^2 regions. No evidence is found for Y(4260) decays to DDˉD \bar D, implying an up per limit \frac{\BR(Y(4260)\to D \bar D)}{\BR(Y(4260)\to J/\psi \pi^+ \pi^-)} < 7.6 (95 % confidence level)

    Measurement of the electron energy spectrum and its moments in inclusive B -> Xe nu decays

    Get PDF
    We report a measurement of the inclusive electron energy spectrum for semileptonic decays of B mesons in a data sample of 52 million Y(4S)-->B(B) over bar decays collected with the BABAR detector at the PEP-II asymmetric-energy B-meson factory at SLAC. We determine the branching fraction, first, second, and third moments of the spectrum for lower cutoffs on the electron energy between 0.6 and 1.5 GeV. We measure the partial branching fraction to be B(B-->Xenu,E-e>0.6 GeV)=[10.36+/-0.06(stat.)+/-0.23(sys.)]%

    Search for decays of B-0 -> e(+)e(-), B-0 -> mu(+)mu(-), B-0 -> e(+/-)mu(-/+)

    Get PDF
    We present a search for the decays B-0 -> e(+)e(-), B-0 ->mu(+)mu(-), and B-0 -> e(+/-)mu(-/+) in data collected at the Upsilon(4S) resonance with the BABAR detector at the SLAC B Factory. Using a data set of 111 fb(-1), we find no evidence for a signal in any of the three channels investigated and set the following branching fraction upper limits at the 90% confidence level: B(B-0 -> e(+)e(-))mu(+)mu(-)) e(+/-)mu(-/+))< 18x10(-8)

    Measurements of Branching Fractions, Polarizations, and Direct CP-Violation Asymmetries in B→ρK∗ and B→f0(980)K∗ Decays

    Get PDF
    We report searches for B -meson decays to the charmless final states ρ K ∗ and f 0 ( 980 ) K ∗ with a sample of 232 × 10 6 B ¯¯¯ B pairs collected with the BABAR detector at the PEP-II e + e − collider. We measure in units of 10 − 6 the following branching fractions, where the first error quoted is statistical and the second systematic, or upper limits are given at the 90% confidence level : B ( B + → ρ 0 K * + ) < 6.1 , B ( B + → ρ + K * 0 ) = 9.6 ± 1.7 ± 1.5 , B ( B 0 → ρ − K * + ) < 12.0 , B ( B 0 → ρ 0 K * 0 ) = 5.6 ± 0.9 ± 1.3 , B ( B + → f 0 ( 980 ) K * + ) = 5.2 ± 1.2 ± 0.5 , and B ( B 0 → f 0 ( 980 ) K * 0 ) < 4.3 . For the significant modes, we also measure the fraction of longitudinal polarization and the charge asymmetry: f L ( B + → ρ + K * 0 ) = 0.52 ± 0.10 ± 0.04 , f L ( B 0 → ρ 0 K * 0 ) = 0.57 ± 0.09 ± 0.08 , A C P ( B + → ρ + K * 0 ) = − 0.01 ± 0.16 ± 0.02 , A C P ( B 0 → ρ 0 K * 0 ) = 0.09 ± 0.19 ± 0.02 , and A C P ( B + → f 0 ( 980 ) K * + ) = − 0.34 ± 0.21 ± 0.03

    The Physics of the B Factories

    Get PDF
    corecore