794 research outputs found

    Fermi-edge singularities in linear and non-linear ultrafast spectroscopy

    Get PDF
    We discuss Fermi-edge singularity effects on the linear and nonlinear transient response of an electron gas in a doped semiconductor. We use a bosonization scheme to describe the low energy excitations, which allows to compute the time and temperature dependence of the response functions. Coherent control of the energy absorption at resonance is analyzed in the linear regime. It is shown that a phase-shift appears in the coherent control oscillations, which is not present in the excitonic case. The nonlinear response is calculated analytically and used to predict that four wave-mixing experiments would present a Fermi-edge singularity when the exciting energy is varied. A new dephasing mechanism is predicted in doped samples that depends linearly on temperature and is produced by the low-energy bosonic excitations in the conduction band.Comment: long version; 9 pages, 4 figure

    Method for estimating potential recognition capacity of texture-based biometrics

    Get PDF
    When adopting an image-based biometric system, an important factor for consideration is its potential recognition capacity, since it not only defines the potential number of individuals likely to be identifiable, but also serves as a useful figure-of-merit for performance. Based on block transform coding commonly used for image compression, this study presents a method to enable coarse estimation of potential recognition capacity for texture-based biometrics. Essentially, each image block is treated as a constituent biometric component, and image texture contained in each block is binary coded to represent the corresponding texture class. The statistical variability among the binary values assigned to corresponding blocks is then exploited for estimation of potential recognition capacity. In particular, methodologies are proposed to determine appropriate image partition based on separation between texture classes and informativeness of an image block based on statistical randomness. By applying the proposed method to a commercial fingerprint system and a bespoke hand vein system, the potential recognition capacity is estimated to around 10^36 for a fingerprint area of 25  mm^2 which is in good agreement with the estimates reported, and around 10^15 for a hand vein area of 2268  mm^2 which has not been reported before

    The molecular systems composed of the charmed mesons in the HSˉ+h.c.H\bar{S}+h.c. doublet

    Full text link
    We study the possible heavy molecular states composed of a pair of charm mesons in the H and S doublets. Since the P-wave charm-strange mesons Ds0(2317)D_{s0}(2317) and Ds1(2460)D_{s1}(2460) are extremely narrow, the future experimental observation of the possible heavy molecular states composed of Ds/DsD_s/D_s^\ast and Ds0(2317)/Ds1(2460)D_{s0}(2317)/D_{s1}(2460) may be feasible if they really exist. Especially the possible JPC=1J^{PC}=1^{--} states may be searched for via the initial state radiation technique.Comment: 42 pages, 4 tables, 31 figures. Improved numerical results and Corrected typos

    The influence of ortho- and para-diphenoloxidase substrates on pigment formation in black yeast-like fungi

    Get PDF
    Dothideaceous black yeast-like fungi (BYF) are known to synthesise DHN-melanin that is inhibited by the systemic fungicide tricyclazole. The final step of the DHN melanin pathway is the conjoining of 1,8-DHN molecules to form the melanin polymer. There are several candidate enzymes for this step, including phenoloxidases such as tyrosinase and laccases, peroxidases, and perhaps also catalases. We analysed the type polyphenoloxidases that are involved in biosynthesis of BYF melanins. For that purpose we used substrates of o-diphenoloxidases (EC 1.10.3.1.): 4-hydroxyphenyl-pyruvic acid, L-β-phenyllactic acid, tyrosine, pyrocatechol, 3,4-dihydroxyphenylalanine and homogentisic acid, as well as substrates of p-diphenoloxidases (EC 1.10.3.2.): syringaldazine, resorcinol, p-phenylenediamine, phloroglucinol, guaiacol and pyrogallic acid. Fourteen strains of black yeasts originating from different natural biotopes were investigated. The tested strains could be divided into four groups based on their ability to produce dark pigments when cultivated on aromatic substrates of o- and on p-diphenoloxidases. It was established that syringaldazine, pyrogallic acid and 4-hydrophenyl-pyruvic acid, β-phenyllactic acid optimally promote melanin biosynthesis. Average intensity of pigmentation of all strains studied was minimal when guaiacol was used as a substrate. The present investigation indicates that the melanisation process may involve more enzymes and more substrates than those commonly recognised. Black yeasts are likely to contain a multipotent polyphenoloxidase

    A Framework for Verifying Data-Centric Protocols

    Get PDF
    International audienceData centric languages, such as recursive rule based languages, have been proposed to program distributed applications over networks. They simplify greatly the code, while still admitting efficient distributed execution. We show that they also provide a promising approach to the verification of distributed protocols, thanks to their data centric orientation, which allows us to explicitly handle global structures such as the topology of the network. We consider a framework using an original formalization in the Coq proof assistant of a distributed computation model based on message passing with either synchronous or asynchronous behavior. The declarative rules of the Netlog language for specifying distributed protocols and the virtual machines for evaluating these rules are encoded in Coq as well. We consider as a case study tree protocols, and show how this framework enables us to formally verify them in both the asynchronous and synchronous setting

    Advances in ab-initio theory of Multiferroics. Materials and mechanisms: modelling and understanding

    Full text link
    Within the broad class of multiferroics (compounds showing a coexistence of magnetism and ferroelectricity), we focus on the subclass of "improper electronic ferroelectrics", i.e. correlated materials where electronic degrees of freedom (such as spin, charge or orbital) drive ferroelectricity. In particular, in spin-induced ferroelectrics, there is not only a {\em coexistence} of the two intriguing magnetic and dipolar orders; rather, there is such an intimate link that one drives the other, suggesting a giant magnetoelectric coupling. Via first-principles approaches based on density functional theory, we review the microscopic mechanisms at the basis of multiferroicity in several compounds, ranging from transition metal oxides to organic multiferroics (MFs) to organic-inorganic hybrids (i.e. metal-organic frameworks, MOFs)Comment: 22 pages, 9 figure

    Screening of cosmological constant for De Sitter Universe in non-local gravity, phantom-divide crossing and finite-time future singularities

    Full text link
    We investigate de Sitter solutions in non-local gravity as well as in non-local gravity with Lagrange constraint multiplier. We examine a condition to avoid a ghost and discuss a screening scenario for a cosmological constant in de Sitter solutions. Furthermore, we explicitly demonstrate that three types of the finite-time future singularities can occur in non-local gravity and explore their properties. In addition, we evaluate the effective equation of state for the universe and show that the late-time accelerating universe may be effectively the quintessence, cosmological constant or phantom-like phases. In particular, it is found that there is a case in which a crossing of the phantom divide from the non-phantom (quintessence) phase to the phantom one can be realized when a finite-time future singularity occurs. Moreover, it is demonstrated that the addition of an R2R^2 term can cure the finite-time future singularities in non-local gravity. It is also suggested that in the framework of non-local gravity, adding an R2R^2 term leads to possible unification of the early-time inflation with the late-time cosmic acceleration.Comment: 42 pages, no figure, version accepted for publication in General Relativity and Gravitatio

    Inhomogeneous States in a Small Magnetic Disk with Single-Ion Surface Anisotropy

    Full text link
    We investigate analytically and numerically the ground and metastable states for easy-plane Heisenberg magnets with single-ion surface anisotropy and disk geometry. The configurations with two half-vortices at the opposite points of the border are shown to be preferable for strong anisotropy. We propose a simple analytical description of the spin configurations for all values of a surface anisotropy. The effects of lattice pinning leads to appearance of a set of metastable configurations.Comment: 10 pages, 7 figures; submitted to Phys. Rev.

    Structure around the island of inversion with single-neutron knockout reactions at GANIL

    Get PDF
    CERN-Proceedings-2010-001 available at http://www.fluka.org/Varenna2009/procmat.htmInternational audienceThe nuclear structure of the 31Mg nucleus has been studied with the singleneutron knockout reaction. We report on the preliminary results of an experiment performed with the EXOGAM array coupled, for the first time, to the SPEG spectrometer at GANIL.We present a provisional result for the inclusive single-neutron knockout cross section of σinc= 90(5) mb. Preliminary exclusive cross sections for the measured bound states, including the ground state, are also presented. Finally, preliminary longitudinal momentum distributions for the ground state and first excited state are also shown. These results are compared to Monte Carlo Shell-Model calculations in the sd-pf region

    The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium

    Get PDF
    The RNA chaperone, Hfq, plays a diverse role in bacterial physiology beyond its original role as a host factor required for replication of Qβ RNA bacteriophage. In this study, we show that Hfq is involved in the expression and secretion of virulence factors in the facultative intracellular pathogen, Salmonella typhimurium. A Salmonella hfq deletion strain is highly attenuated in mice after both oral and intraperitoneal infection, and shows a severe defect in invasion of epithelial cells and a growth defect in both epithelial cells and macrophages in vitro. Surprisingly, we find that these phenotypes are largely independent of the previously reported requirement of Hfq for expression of the stationary phase sigma factor, RpoS. Our results implicate Hfq as a key regulator of multiple aspects of virulence including regulation of motility and outer membrane protein (OmpD) expression in addition to invasion and intracellular growth. These pleiotropic effects are suggested to involve a network of regulatory small non-coding RNAs, placing Hfq at the centre of post-transcriptional regulation of virulence gene expression in Salmonella. In addition, the hfq mutation appears to cause a chronic activation of the RpoE-mediated envelope stress response which is likely due to a misregulation of membrane protein expression
    corecore