234 research outputs found

    IGLV3-21∗01 is an inherited risk factor for CLL through the acquisition of a single-point mutation enabling autonomous BCR signaling

    Get PDF
    © 2020 National Academy of Sciences. All rights reserved. The prognosis of chronic lymphocytic leukemia (CLL) depends on different markers, including cytogenetic aberrations, oncogenic mutations, and mutational status of the immunoglobulin (Ig) heavy-chain variable (IGHV) gene. The number of IGHV mutations distinguishes mutated (M) CLL with a markedly superior prognosis from unmutated (UM) CLL cases. In addition, B cell antigen receptor (BCR) stereotypes as defined by IGHV usage and complementaritydetermining regions (CDRs) classify ∌30% of CLL cases into prognostically important subsets. Subset 2 expresses a BCR with the combination of IGHV3-21-derived heavy chains (HCs) with IGLV3- 21-derived light chains (LCs), and is associated with an unfavorable prognosis. Importantly, the subset 2 LC carries a single-point mutation, termed R110, at the junction between the variable and constant LC regions. By analyzing 4 independent clinical cohorts through BCR sequencing and by immunophenotyping with antibodies specifically recognizing wild-type IGLV3-21 and R110-mutated IGLV3-21 (IGLV3-21R110), we show that IGLV3-21R110-expressing CLL represents a distinct subset with poor prognosis independent of IGHV mutations. Compared with other alleles, only IGLV3-21∗01 facilitates effective homotypic BCR-BCR interaction that results in autonomous, oncogenic BCR signaling after acquiring R110 as a single-point mutation. Presumably, this mutation acts as a standalone driver that transforms IGLV3-21∗01-expressing B cells to develop CLL. Thus, we propose to expand the conventional definition of CLL subset 2 to subset 2L by including all IGLV3-21R110-expressing CLL cases regardless of IGHV mutational status. Moreover, the generation ofmonoclonal antibodies recognizing IGLV3-21 or mutated IGLV3-21R110 facilitates the recognition of B cells carrying this mutation in CLL patients or healthy donors

    Kondo Conductance in an Atomic Nanocontact from First Principles

    Full text link
    The electrical conductance of atomic metal contacts represents a powerful tool to detect nanomagnetism. Conductance reflects magnetism through anomalies at zero bias -- generally with Fano lineshapes -- due to the Kondo screening of the magnetic impurity bridging the contact. A full atomic-level understanding of this nutshell many-body system is of the greatest importance, especially in view of our increasing need to control nanocurrents by means of magnetism. Disappointingly, zero bias conductance anomalies are not presently calculable from atomistic scratch. In this Letter we demonstrate a working route connecting approximately but quantitatively density functional theory (DFT) and numerical renormalization group (NRG) approaches and leading to a first-principles conductance calculation for a nanocontact, exemplified by a Ni impurity in a Au nanowire. A Fano-like conductance lineshape is obtained microscopically, and shown to be controlled by the impurity s-level position. We also find a relationship between conductance anomaly and geometry, and uncover the possibility of opposite antiferromagnetic and ferromagnetic Kondo screening -- the latter exhibiting a totally different and unexplored zero bias anomaly. The present matching method between DFT and NRG should permit the quantitative understanding and exploration of this larger variety of Kondo phenomena at more general magnetic nanocontacts.Comment: 11 pages, 3 figures. Supplementary materials under request at [email protected]

    Magnetolocalization in disordered quantum wires

    Full text link
    The magnetic field dependent localization in a disordered quantum wire is considered nonperturbatively. An increase of an averaged localization length with the magnetic field is found, saturating at twice its value without magnetic field. The crossover behavior is shown to be governed both in the weak and strong localization regime by the magnetic diffusion length L_B. This function is derived analytically in closed form as a function of the ratio of the mean free path l, the wire thickness W, and the magnetic length l_B for a two-dimensional wire with specular boundary conditions, as well as for a parabolic wire. The applicability of the analytical formulas to resistance measurements in the strong localization regime is discussed. A comparison with recent experimental results on magnetolocalization is included.Comment: 22 pages, RevTe

    Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials

    Get PDF
    Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.Comment: 36 pages, 5 figures, resubmitted to J.Phys.: Condens. Matte

    Impact of social determinants on antiretroviral therapy access and outcomes entering the era of universal treatment for people living with HIV in Italy

    Get PDF
    Background: Social determinants are known to be a driving force of health inequalities, even in high income countries. Aim of our study was to determine if these factors can limit antiretroviral therapy (ART) access, outcome and retention in care of people living with HIV (PLHIV) in Italy. Methods: All ART naĂŻve HIV+ patients (pts) of Italian nationality enrolled in the ICONA Cohort from 2002 to 2016 were included. The association of socio-demographic characteristics (age, sex, risk factor for HIV infection, educational level, occupational status and residency area) with time to: ART initiation (from the first positive anti-HIV test), ART regimen discontinuation, and first HIV-RNA < 50 cp/mL, were evaluated by Cox regression analysis, Kaplan Meier method and log-rank test. Results: A total of 8023 HIV+ pts (82% males, median age at first pos anti-HIV test 36 years, IQR: 29-44) were included: 6214 (77.5%) started ART during the study period. Women, people who inject drugs (PWID) and residents in Southern Italy presented the lowest levels of education and the highest rate of unemployment compared to other groups. Females, pts aged > 50 yrs., unemployed vs employed, and people with lower educational levels presented the lowest CD4 count at ART initiation compared to other groups. The overall median time to ART initiation was 0.6 years (yrs) (IQR 0.1-3.7), with a significant decrease over time [2002-2006 = 3.3 yrs. (0.2-9.4); 2007-2011 = 1.0 yrs. (0.1-3.9); 2012-2016 = 0.2 yrs. (0.1-2.1), p < 0.001]. By multivariate analysis, females (p < 0.01) and PWID (p < 0.001), presented a longer time to ART initiation, while older people (p < 0.001), people with higher educational levels (p < 0.001), unemployed (p = 0.02) and students (p < 0.001) were more likely to initiate ART. Moreover, PWID, unemployed vs stable employed, and pts. with lower educational levels showed a lower 1-year probability of achieving HIV-RNA suppression, while females, older patients, men who have sex with men (MSM), unemployed had higher 1-year risk of first-line ART discontinuation. Conclusions: Despite median time to ART start decreased from 2002 to 2016, socio-demographic factors still contribute to disparities in ART initiation, outcome and durability

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Tissue sparing surgery in knee reconstruction: unicompartmental (UKA), patellofemoral (PFA), UKA + PFA, bi-unicompartmental (Bi-UKA) arthroplasties

    Get PDF
    Recently mini-invasive joint replacement has become one of the hottest topics in the orthopaedic world. However, these terms have been improperly misunderstood as a “key-hole” surgery where traditional components are implanted with shorter surgical approaches, with few benefits and several possible dangers. Small implants as unicompartmental knee prostheses, patellofemoral prostheses and bi-unicompartmental knee prostheses might represent real less invasive procedures: Tissue sparing surgery, the Italian way to minimally invasive surgery (MIS). According to their experience the authors go through this real tissue sparing surgery not limited only to a small incision, but where the surgeons can respect the physiological joint biomechanics

    Chemical analysis of the superatom model for sulfur-stabilized gold nanoparticles

    Full text link
    The superatom model for nanoparticle structure is shown to be inadequate for the prediction of the thermodynamic stability of gold nanoparticles. The observed large HOMO-LUMO gaps for stable nanoparticles predicted by this model are, for sulfur-stabilized gold nanoparticles, attributed to covalent interactions of the metal with thiyl adsorbate radicals rather than ionic interactions with thiolate adsorbate ions, as is commonly presumed. In particular, gold adatoms in the stabilizing layer are shown to be of Au(0) nature, subtle but significantly different from the atoms of the gold core owing to the variations in the proportion of gold-gold and gold-sulfur links that form. These interactions explain the success of the superatom model in describing the electronic structure of both known and informatory nanoparticle compositions. Nanoparticle reaction energies are, however, found not to correlate with the completion of superatom shells

    RNA-Seq Reveals an Integrated Immune Response in Nucleated Erythrocytes

    Get PDF
    Background: Throughout the primary literature and within textbooks, the erythrocyte has been tacitly accepted to have maintained a unique physiological role; namely gas transport and exchange. In non-mammalian vertebrates, nucleated erythrocytes are present in circulation throughout the life cycle and a fragmented series of observations in mammals support a potential role in non-respiratory biological processes. We hypothesised that nucleated erythrocytes could actively participate via ligand-induced transcriptional re-programming in the immune response. Methodology/Principal Findings: Nucleated erythrocytes from both fish and birds express and regulate specific pattern recognition receptor (PRR) mRNAs and, thus, are capable of specific pathogen associated molecular pattern (PAMP) detection that is central to the innate immune response. In vitro challenge with diverse PAMPs led to de novo specific mRNA synthesis of both receptors and response factors including interferon-alpha (IFNα) that exhibit a stimulus-specific polysomal shift supporting active translation. RNA-Seq analysis of the PAMP (Poly (I:C), polyinosinic:polycytidylic acid)-erythrocyte response uncovered diverse cohorts of differentially expressed mRNA transcripts related to multiple physiological systems including the endocrine, reproductive and immune. Moreover, erythrocyte-derived conditioned mediums induced a type-1 interferon response in macrophages thus supporting an integrative role for the erythrocytes in the immune response. Conclusions/Significance: We demonstrate that nucleated erythrocytes in non-mammalian vertebrates spanning significant phylogenetic distance participate in the immune response. RNA-Seq studies highlight a mRNA repertoire that suggests a previously unrecognized integrative role for the erythrocytes in other physiological systems
    • 

    corecore