1,209 research outputs found

    Quantitative analysis of dynamic computed tomography angiography for the detection of endoleaks after abdominal aorta aneurysm endovascular repair:A feasibility study

    Get PDF
    ObjectivesTo assess the feasibility of quantitative analysis of dynamic computed tomography angiography (dCTA) for the detection of endoleaks in patients who underwent endovascular repair of abdominal aortic aneurysms (EVAR).Material and methodsTwenty patients scheduled for contrast-enhanced CT angiography (CTA) of the abdominal aorta post-EVAR were prospectively enrolled. All patients received a standard triphasic CTA protocol, followed by an additional dCTA. The dCTA acquisition enabled reconstruction of color-coded maps depicting blood perfusion and a dCTA dataset of the aneurysm sac. Observers assessed the dCTA and dynamic CT perfusion (dCTP) images for the detection of endoleaks, establishing diagnostic confidence based on a modified 5-point Likert scale. An index was calculated for the ratio between the endoleak and aneurysm sac using blood flow for dCTP and Hounsfield units (HU) for dCTA. The Wilcoxon test compared the endoleak index and the diagnostic confidence of the observers.ResultsIn total, 19 patients (18 males, median age 74 years [70.5-75.7]) were included for analysis. Nine endoleaks were detected in 7 patients using triphasic CTA as the reference standard. There was complete agreement for endoleak detection between the two techniques on a per-patient basis. Both dCTA and dCTP identified an additional endoleak in one patient. The diagnostic confidence using dCTP for detection of endoleaks was not significantly superior to dCTA (5.0 [5-5] vs. 4.5 [4-5], respectively; p = 0.11); however, dCTP demonstrated superior diagnostic confidence for endoleak exclusion compared to dCTA (1.0 [1-1] vs 1.5 [1.5-1.5], respectively; p ConclusionsQuantitative analysis of dCTP imaging can aid in the detection of endoleaks and demonstrates a higher endoleak detection rate than triphasic CTA, as well as a strong correlation with visual assessment of dCTA images

    Predictive Value of Cardiac CTA, Cardiac MRI, and Transthoracic Echocardiography for Cardioembolic Stroke Recurrence

    Get PDF
    Background: Transthoracic echocardiography (TTE) is the standard of care for initial evaluation of patients with suspected cardioembolic stroke. While TTE is useful for assessing certain sources of cardiac emboli, its diagnostic capability is limited in the detection of other sources, including left atrial thrombus and aortic plaques. Objectives: To investigate sensitivity, specificity and predictive value of cardiac CT angigography (cCTA), cardiac MRI (CMR), and TTE for recurrence in patients with suspected cardioembolic stroke. Methods: We retrospectively included 151 patients with suspected cardioembolic stroke who underwent TTE and either CMR (n=75) or cCTA (n=76) between January 2013 and May 2017. We evaluated for presence of left atrial thrombus, left ventricular thrombus, vulnerable aortic plaque, cardiac tumors, and valvular vegetation as causes of cardioembolic stroke. The end-point was stroke recurrence. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for recurrent stroke were calculated; the diagnostic accuracy of CMR, cCTA, and TTE was compared between and within groups using area under the curves (AUCs). Results: Twelve and 14 recurrent strokes occurred in the cCTA and CMR groups, respectively. Sensitivity, specificity, PPV and NPV were: 33.3%, 93.7%, 50.0%, and 88.2% for cCTA; 14.3%, 80.3%, 14.3%, and 80.3% for CMR; 14.3%, 83.6%, 16.7%, 80.9% for TTE in the CMR group, and 8.3%, 93.7%, 20.0% and 84.5% for TTE in the cCTA group. Accuracy was not different (p>0.05) between cCTA (0.63, 95% CI [0.49, 0.77]), CMR (0.53, [0.42, 0.63]), TTE in CMR group (0.51, [0.40, 0.61], and TTE in cCTA group (0.51, [0.42, 0.59]). In cCTA group, atrial and ventricular thrombus were detected by cCTA in 3 patients and TTE in 1 patient; in CMR group, thrombus was detected by CMR in 1 patient and TTE in 2 patients. Conclusion: cCTA, CMR, and TTE showed comparably high specificity and NPV for cardioembolic stroke recurrence. cCTA and CMR may be valid alternatives to TTE. cCTA may be preferred given potentially better detection of atrial and ventricular thrombus. Clinical impact: cCTA and CMR have similar clinical performance as TTE for predicting cardioembolic stroke recurrence. This observation may be especially important when TTE provides equivocal findings

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at √s=7 TeV

    Get PDF
    Bose-Einstein correlations of same-sign charged pions, produced in protonproton collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected by the LHCb experiment. The signature for Bose-Einstein correlations is observed in the form of an enhancement of pairs of like-sign charged pions with small four-momentum difference squared. The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source is investigated, determining both the correlation radius and the chaoticity parameter. The measured correlation radius is found to increase as a function of increasing charged-particle multiplicity, while the chaoticity parameter is seen to decreas

    Study of J /ψ production in Jets

    Get PDF
    The production of J/ψ mesons in jets is studied in the forward region of proton-proton collisions using data collected with the LHCb detector at a center-of-mass energy of 13 TeV. The fraction of the jet transverse momentum carried by the J/ψ meson, z(J/ψ)≡pT(J/ψ)/pT(jet), is measured using jets with pT(jet)>20 GeV in the pseudorapidity range 2.5<η(jet)<4.0. The observed z(J/ψ)distribution for J/ψ mesons produced in b-hadron decays is consistent with expectations. However, the results for prompt J/ψ production do not agree with predictions based on fixed-order nonrelativistic QCD. This is the first measurement of the pT fraction carried by prompt J/ψ mesons in jets at any experiment

    Measurement of the inelastic pp cross-section at a centre-of-mass energy of 13TeV

    Get PDF
    The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum p &gt; 2 GeV/c in the pseudorapidity range 2 &lt; η &lt; 5 is determined to be ϭ acc = 62:2 ± 0:2 ± 2:5mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section ϭ inel = 75:4 ± 3:0 ± 4:5mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7TeV is also reported

    Study of charmonium production in b -hadron decays and first evidence for the decay Bs0

    Get PDF
    Using decays to φ-meson pairs, the inclusive production of charmonium states in b-hadron decays is studied with pp collision data corresponding to an integrated luminosity of 3.0 fb−1, collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. Denoting byBC ≡ B(b → C X) × B(C → φφ) the inclusive branching fraction of a b hadron to a charmonium state C that decays into a pair of φ mesons, ratios RC1C2 ≡ BC1 /BC2 are determined as Rχc0ηc(1S) = 0.147 ± 0.023 ± 0.011, Rχc1ηc(1S) =0.073 ± 0.016 ± 0.006, Rχc2ηc(1S) = 0.081 ± 0.013 ± 0.005,Rχc1 χc0 = 0.50 ± 0.11 ± 0.01, Rχc2 χc0 = 0.56 ± 0.10 ± 0.01and Rηc(2S)ηc(1S) = 0.040 ± 0.011 ± 0.004. Here and below the first uncertainties are statistical and the second systematic.Upper limits at 90% confidence level for the inclusive production of X(3872), X(3915) and χc2(2P) states are obtained as RX(3872)χc1 < 0.34, RX(3915)χc0 < 0.12 andRχc2(2P)χc2 < 0.16. Differential cross-sections as a function of transverse momentum are measured for the ηc(1S) andχc states. The branching fraction of the decay B0s → φφφ is measured for the first time, B(B0s → φφφ) = (2.15±0.54±0.28±0.21B)×10−6. Here the third uncertainty is due to the branching fraction of the decay B0s → φφ, which is used for normalization. No evidence for intermediate resonances is seen. A preferentially transverse φ polarization is observed.The measurements allow the determination of the ratio of the branching fractions for the ηc(1S) decays to φφ and p p asB(ηc(1S)→ φφ)/B(ηc(1S)→ p p) = 1.79 ± 0.14 ± 0.32

    Galectin-3 and Beclin1/Atg6 Genes In Human Cancers: Using cDNA Tissue Panel, qRT-PCR, and Logistic Regression Model to Identify Cancer Cell Biomarkers

    Get PDF
    Cancer biomarkers are sought to support cancer diagnosis, predict cancer patient response to treatment and survival. Identifying reliable biomarkers for predicting cancer treatment response needs understanding of all aspects of cancer cell death and survival. Galectin-3 and Beclin1 are involved in two coordinated pathways of programmed cell death, apoptosis and autophagy and are linked to necroptosis/necrosis. The aim of the study was to quantify galectin-3 and Beclin1 mRNA in human cancer tissue cDNA panels and determine their utility as biomarkers of cancer cell survival.A panel of 96 cDNAs from eight (8) different normal and cancer tissue types were used for quantitative real-time polymerase chain reaction (qRT-PCR) using ABI7900HT. Miner2.0, a web-based 4- and 3-parameter logistic regression software was used to derive individual well polymerase chain reaction efficiencies (E) and cycle threshold (Ct) values. Miner software derived formula was used to calculate mRNA levels and then fold changes. The ratios of cancer to normal tissue levels of galectin-3 and Beclin1 were calculated (using the mean for each tissue type). Relative mRNA expressions for galectin-3 were higher than for Beclin1 in all tissue (normal and cancer) types. In cancer tissues, breast, kidney, thyroid and prostate had the highest galectin-3 mRNA levels compared to normal tissues. High levels of Beclin1 mRNA levels were in liver and prostate cancers when compared to normal tissues. Breast, kidney and thyroid cancers had high galectin-3 levels and low Beclin1 levels.Galectin-3 expression patterns in normal and cancer tissues support its reported roles in human cancer. Beclin1 expression pattern supports its roles in cancer cell survival and in treatment response. qRT-PCR analysis method used may enable high throughput studies to generate molecular biomarker sets for diagnosis and predicting cancer treatment response

    Updated Determination of D⁰–D¯⁰Mixing and CP Violation Parameters with D⁰→K⁺π⁻ Decays

    Get PDF
    We report measurements of charm-mixing parameters based on the decay-time-dependent ratio of D⁰→K⁺π⁻ to D⁰→K⁻π⁺ rates. The analysis uses a data sample of proton-proton collisions corresponding to an integrated luminosity of 5.0  fb⁻¹ recorded by the LHCb experiment from 2011 through 2016. Assuming charge-parity (CP) symmetry, the mixing parameters are determined to be x′²=(3.9±2.7)×10⁻⁵, y′=(5.28±0.52)×10⁻³, and R[subscript D]=(3.454±0.031)×10⁻³. Without this assumption, the measurement is performed separately for D⁰ and D[over ¯]⁰ mesons, yielding a direct CP-violating asymmetry A[subscript D]=(-0.1±9.1)×10⁻³, and magnitude of the ratio of mixing parameters 1.00<|q/p|<1.35 at the 68.3% confidence level. All results include statistical and systematic uncertainties and improve significantly upon previous single-measurement determinations. No evidence for CP violation in charm mixing is observed

    Observation of D⁰ Meson Decays to Π⁺π⁻μ⁺μ⁻ and K⁺K⁻μ⁺μ⁻ Final States

    Get PDF
    The first observation of the D⁰→π⁺π⁻μ⁺μ⁻ and D⁰→K⁺K⁻μ⁺μ⁻ decays is reported using a sample of proton-proton collisions collected by LHCb at a center-of-mass energy of 8 TeV, and corresponding to 2  fb⁻¹ of integrated luminosity. The corresponding branching fractions are measured using as normalization the decay D⁰→K⁻π⁺[μ⁺μ⁻][subscript ρ⁰/ω], where the two muons are consistent with coming from the decay of a ρ⁰ or ω meson. The results are B(D⁰→π⁺π⁻μ⁺μ⁻)=(9.64±0.48±0.51±0.97)×10⁻⁷ and B(D⁰→K⁺K⁻μ⁺μ⁻)=(1.54±0.27±0.09±0.16)×10⁻⁷, where the uncertainties are statistical, systematic, and due to the limited knowledge of the normalization branching fraction. The dependence of the branching fraction on the dimuon mass is also investigated
    corecore