93 research outputs found

    How to: interpret MICs of antifungal compounds according to the revised clinical breakpoints v. 10.0 European committee on antimicrobial susceptibility testing (EUCAST)

    Get PDF
    BACKGROUND: EUCAST has revised the definition of the susceptibility category "I" from "Intermediate" to "Susceptible, Increased exposure". This implies that "I" can be used where the drug-concentration at the site of infection is high, either because of dose escalation or through other means to ensure efficacy. Consequently, "I" is no longer used as a buffer-zone to prevent technical fact

    Molecular Characterisation of Trimethoprim Resistance in Escherichia coli and Klebsiella pneumoniae during a Two Year Intervention on Trimethoprim Use

    Get PDF
    BACKGROUND: Trimethoprim resistance is increasing in Enterobacteriaceae. In 2004-2006 an intervention on trimethoprim use was conducted in Kronoberg County, Sweden, resulting in 85% reduction in trimethoprim prescriptions. We investigated the distribution of dihydrofolate reductase (dfr)-genes and integrons in Escherichia coli and Klebsiella pneumoniae and the effect of the intervention on this distribution. METHODOLOGY/PRINCIPAL FINDINGS: Consecutively isolated E. coli (n = 320) and K. pneumoniae (n = 54) isolates phenotypically resistant to trimethoprim were studied. All were investigated for the presence of dfrA1, dfrA5, dfrA7, dfrA8, dfrA12, dfrA14, dfrA17 and integrons class I and II. Isolates negative for the seven dfr-genes (n = 12) were also screened for dfr2d, dfrA3, dfrA9, dfrA10, dfrA24 and dfrA26. These genes accounted for 96% of trimethoprim resistance in E. coli and 69% in K. pneumoniae. The most prevalent was dfrA1 in both species. This was followed by dfrA17 in E. coli which was only found in one K. pneumoniae isolate. Class I and II Integrons were more common in E. coli (85%) than in K. pneumoniae (57%). The distribution of dfr-genes did not change during the course of the 2-year intervention. CONCLUSIONS/SIGNIFICANCE: The differences observed between the studied species in terms of dfr-gene and integron prevalence indicated a low rate of dfr-gene transfer between these two species and highlighted the possible role of narrow host range plasmids in the spread of trimethoprim resistance. The stability of dfr-genes, despite large changes in the selective pressure, indirectly suggests a low fitness cost of dfr-gene carriage

    Strong correlation between the rates of intrinsically antibiotic-resistant species and the rates of acquired resistance in Gram-negative species causing bacteraemia, EU/EEA, 2016

    Get PDF
    BackgroundAntibiotic resistance, either intrinsic or acquired, is a major obstacle for treating bacterial infections.AimOur objective was to compare the country-specific species distribution of the four Gram-negative species Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter species and the proportions of selected acquired resistance traits within these species.MethodWe used data reported for 2016 to the European Antimicrobial Resistance Surveillance Network (EARS-Net) by 30 countries in the European Union and European Economic Area.ResultsThe country-specific species distribution varied considerably. While E. coli accounted for 31.9% to 81.0% (median: 69.0%) of all reported isolates, the two most common intrinsically resistant species P. aeruginosa and Acinetobacter spp. combined (PSEACI) accounted for 5.5% to 39.2% of isolates (median: 10.1%). Similarly, large national differences were noted for the percentages of acquired non-susceptibility to third-generation cephalosporins, carbapenems and fluoroquinolones. There was a strong positive rank correlation between the country-specific percentages of PSEACI and the percentages of non-susceptibility to the above antibiotics in all four species (rho > 0.75 for 10 of the 11 pairs of variables tested).ConclusionCountries with the highest proportion of P. aeruginosa and Acinetobacter spp. were also those where the rates of acquired non-susceptibility in all four studied species were highest. The differences are probably related to national differences in antibiotic consumption and infection prevention and control routines

    Rapid Qualitative Urinary Tract Infection Pathogen Identification by SeptiFast® Real-Time PCR

    Get PDF
    Background Urinary tract infections (UTI) are frequent in outpatients. Fast pathogen identification is mandatory for shortening the time of discomfort and preventing serious complications. Urine culture needs up to 48 hours until pathogen identification. Consequently, the initial antibiotic regimen is empirical. Aim To evaluate the feasibility of qualitative urine pathogen identification by a commercially available real-time PCR blood pathogen test (SeptiFast®) and to compare the results with dipslide and microbiological culture. Design of study Pilot study with prospectively collected urine samples. Setting University hospital. Methods 82 prospectively collected urine samples from 81 patients with suspected UTI were included. Dipslide urine culture was followed by microbiological pathogen identification in dipslide positive samples. In parallel, qualitative DNA based pathogen identification (SeptiFast®) was performed in all samples. Results 61 samples were SeptiFast® positive, whereas 67 samples were dipslide culture positive. The inter-methodological concordance of positive and negative findings in the gram+, gram- and fungi sector was 371/410 (90%), 477/492 (97%) and 238/246 (97%), respectively. Sensitivity and specificity of the SeptiFast® test for the detection of an infection was 0.82 and 0.60, respectively. SeptiFast® pathogen identifications were available at least 43 hours prior to culture results. Conclusion The SeptiFast® platform identified bacterial DNA in urine specimens considerably faster compared to conventional culture. For UTI diagnosis sensitivity and specificity is limited by its present qualitative setup which does not allow pathogen quantification. Future quantitative assays may hold promise for PCR based UTI pathogen identification as a supplementation of conventional culture methods

    Prevention of hepatorenal toxicity with Sonchus asper in gentamicin treated rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Sonchus asper </it>possesses antioxidant capacity and is used in liver and kidney disorders. We have investigated the preventive effect of methanolic extract of <it>Sonchus asper </it>(SAME) on the gentamicin induced alterations in biochemical and morphological parameters in liver and kidneys of Sprague-Dawley male rat.</p> <p>Methods</p> <p>Acute oral toxicity studies were performed for selecting the therapeutic dose of SAME. 30 Sprague-Dawley male rats were equally divided into five groups with 06 animals in each. Group I received saline (0.5 ml/kg bw; 0.9% NaCl) while Group II administered with gentamicin 0.5 ml (100 mg/kg bw; i.p.) for ten days. Animals of Group III and Group IV received gentamicin and SAME 0.5 ml at a dose of 100 mg/kg bw and 200 mg/kg bw, respectively while Group V received only SAME at a dose of 200 mg/kg bw. Biochemical parameters including aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), γ-glutamyltransferase (γ-GT), total cholesterol, triglycerides, total protein, albumin, creatinine, blood urea nitrogen (BUN), total bilirubin and direct bilirubin were determined in serum collected from various groups. Urinary out puts were measured in each group and also assessed for the level of protein and glucose. Lipid peroxides (TBARS), glutathione (GSH), DNA injuries and activities of antioxidant enzymes; catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) were determined in liver and renal samples. Histopathological studies of liver and kidneys were also carried out.</p> <p>Results</p> <p>On the basis of acute oral toxicity studies, 2000 mg/kg bw did not induce any toxicity in rats, 1/10<sup>th </sup>of the dose was selected for preventive treatment. Gentamicin increased the level of serum biomarkers; AST, ALT, ALP, LDH, γ-GT, total cholesterol, triglycerides, total protein, albumin, creatinine, BUN, total and direct bilirubin; as were the urinary level of protein, glucose, and urinary output. Lipid peroxidation (TBARS) and DNA injuries increased while GSH contents and activities of antioxidant enzymes; CAT, POD, SOD decreased with gentamicin in liver and kidney samples. SAME administration, dose dependently, prevented the alteration in biochemical parameters and were supported by low level of tubular and glomerular injuries induced with gentamicin.</p> <p>Conclusion</p> <p>These results suggested the preventive role of SAME for gentamicin induced toxicity that could be attributed by phytochemicals having antioxidant and free radical scavenging properties.</p

    Tackling antibiotic resistance: the environmental framework

    Get PDF
    Antibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment

    Developmental roadmap for antimicrobial susceptibility testing systems

    Get PDF
    Antimicrobial susceptibility testing (AST) technologies help to accelerate the initiation of targeted antimicrobial therapy for patients with infections and could potentially extend the lifespan of current narrow-spectrum antimicrobials. Although conceptually new and rapid AST technologies have been described, including new phenotyping methods, digital imaging and genomic approaches, there is no single major, or broadly accepted, technological breakthrough that leads the field of rapid AST platform development. This might be owing to several barriers that prevent the timely development and implementation of novel and rapid AST platforms in health-care settings. In this Consensus Statement, we explore such barriers, which include the utility of new methods, the complex process of validating new technology against reference methods beyond the proof-of-concept phase, the legal and regulatory landscapes, costs, the uptake of new tools, reagent stability, optimization of target product profiles, difficulties conducting clinical trials and issues relating to quality and quality control, and present possible solutions
    corecore