151 research outputs found

    Niche partitioning by photosynthetic plankton as a driver of CO2-fixation across the oligotrophic South Pacific Subtropical Ocean

    Get PDF
    Oligotrophic ocean gyre ecosystems may be expanding due to rising global temperatures [1-5]. Models predicting carbon flow through these changing ecosystems require accurate descriptions of phytoplankton communities and their metabolic activities [6]. We therefore measured distributions and activities of cyanobacteria and small photosynthetic eukaryotes throughout the euphotic zone on a zonal transect through the South Pacific Ocean, focusing on the ultraoligotrophic waters of the South Pacific Gyre (SPG). Bulk rates of CO2 fixation were low (0.1 mu mol Cl--(1) d(-1)) but pervasive throughout both the surface mixed-layer (upper 150 m), as well as the deep chlorophyll a maximum of the core SPG. Chloroplast 16S rRNA metabarcoding, and single-cell (CO2)-C-13 uptake experiments demonstrated niche differentiation among the small eukaryotes and picocyanobacteria. Prochlorococcus abundances, activity, and growth were more closely associated with the rims of the gyre. Small, fast-growing, photosynthetic eukaryotes, likely related to the Pelagophyceae, characterized the deep chlorophyll a maximum. In contrast, a slower growing population of photosynthetic eukaryotes, likely comprised of Dictyochophyceae and Chrysophyceae, dominated the mixed layer that contributed 65-88% of the areal CO2 fixation within the core SPG. Small photosynthetic eukaryotes may thus play an underappreciated role in CO2 fixation in the surface mixed-layer waters of ultraoligotrophic ecosystems

    Facets of diazotrophy in the oxygen minimum zone waters off Peru

    Get PDF
    Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2− and PO43− are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the futu

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    Small-scale carbon and nitrogen fluxes associated with Aphanizomenon sp. in the Baltic Sea.

    Get PDF
    Carbon and nitrogen fluxes in Aphanizomenon sp. colonies in the Baltic Sea were measured using a combination of microsensors, stable isotopes, mass spectrometry, and nanoscale secondary ion mass spectrometry (nanoSIMS). Cell numbers varied between 956 and 33 000 in colonies ranging in volume between 1.4 × 10−4 and 230 × 10−4 mm−3. The high cell content and their productivity resulted in steep O2 gradients at the colony–water interface as measured with an O2 microsensor. Colonies were highly autotrophic communities with few heterotrophic bacteria attached to the filaments. Volumetric gross photosynthesis in colonies was 78 nmol O2 mm−3 h−1. Net photosynthesis was 64 nmol O2 mm−3 h−1, and dark respiration was on average 15 nmol O2 mm−3 h−1 or 16% of gross photosynthesis. These volumetric photosynthesis rates belong to the highest measured in aquatic systems. The average cell-specific net carbon-fixation rate was 38 and 40 fmol C cell−1 h−1 measured by microsensors and by using stable isotopes in combination with mass spectrometry and nanoSIMS, respectively. In light, the net C:N fixation ratio of individual cells was 7.3±3.4. Transfer of fixed N2 from heterocysts to vegetative cells was fast, but up to 35% of the gross N2 fixation in light was released as ammonium into the surrounding water. Calculations based on a daily cycle showed a net C:N fixation ratio of 5.3. Only 16% of the bulk N2 fixation in dark was detected in Aphanizomenon sp. Hence, other organisms appeared to dominate N2 fixation and NH4+ release during darkness

    N-2-fixation, ammonium release and N-transfer to the microbial and classical food web within a plankton community

    No full text
    We investigated the role of N-2-fixation by the colony-forming cyanobacterium, Aphanizomenon spp., for the plankton community and N-budget of the N-limited Baltic Sea during summer by using stable isotope tracers combined with novel secondary ion mass spectrometry, conventional mass spectrometry and nutrient analysis. When incubated with N-15(2), Aphanizomenon spp. showed a strong N-15-enrichment implying substantial N-15(2)-fixation. Intriguingly, Aphanizomenon did not assimilate tracers of (NH4+)-N-15 from the surrounding water. These findings are in line with model calculations that confirmed a negligible N-source by diffusion-limited NH4+ fluxes to Aphanizomenon colonies at low bulk concentrations (<250 nM) as compared with N-2-fixation within colonies. No N-2-fixation was detected in autotrophic microorganisms <5 mu m, which relied on NH4+ uptake from the surrounding water. Aphanizomenon released about 50% of its newly fixed N-2 as NH4+. However, NH4+ did not accumulate in the water but was transferred to heterotrophic and autotrophic microorganisms as well as to diatoms (Chaetoceros sp.) and copepods with a turnover time of similar to 5 h. We provide direct quantitative evidence that colony-forming Aphanizomenon releases about half of its recently fixed N-2 as NH4+, which is transferred to the prokaryotic and eukaryotic plankton forming the basis of the food web in the plankton community. Transfer of newly fixed nitrogen to diatoms and copepods furthermore implies a fast export to shallow sediments via fast-sinking fecal pellets and aggregates. Hence, N-2-fixing colony-forming cyanobacteria can have profound impact on ecosystem productivity and biogeochemical processes at shorter time scales (hours to days) than previously thought

    Use of carbon monoxide and hydrogen by a bacteria–animal symbiosis from seagrass sediments

    No full text
    The gutless marine worm Olavius algarvensis lives in symbiosis with chemosynthetic bacteria that provide nutrition by fixing carbon dioxide (CO2 ) into biomass using reduced sulfur compounds as energy sources. A recent metaproteomic analysis of the O. algarvensis symbiosis indicated that carbon monoxide (CO) and hydrogen (H2 ) might also be used as energy sources. We provide direct evidence that the O. algarvensis symbiosis consumes CO and H2 . Single cell imaging using nanoscale secondary ion mass spectrometry revealed that one of the symbionts, the γ3-symbiont, uses the energy from CO oxidation to fix CO2 . Pore water analysis revealed considerable in-situ concentrations of CO and H2 in the O. algarvensis environment, Mediterranean seagrass sediments. Pore water H2 concentrations (89-2147 nM) were up to two orders of magnitude higher than in seawater, and up to 36-fold higher than previously known from shallow-water marine sediments. Pore water CO concentrations (17-51 nM) were twice as high as in the overlying seawater (no literature data from other shallow-water sediments are available for comparison). Ex-situ incubation experiments showed that dead seagrass rhizomes produced large amounts of CO. CO production from decaying plant material could thus be a significant energy source for microbial primary production in seagrass sediments
    • 

    corecore