55 research outputs found

    Evidence for an Allelopathic Interaction Between Rye and Wild Oats

    Get PDF
    Allelopathy is a biological phenomenon in which an organism produces one or more biochemicals that influence the growth, survival, and reproduction of other organisms. Allelopathy has been the subject of a great deal of research in chemical ecology since the 1930s. The characterization of the factors that influence this phenomenon has barely been explored, mainly due to the complexity of this area. The main aim of the research carried out to date has been to shed light on the importance of these interactions in agroecosystems, especially in relation to the interactions between crops and weeds. Herein we report the characterization of a complete allelochemical pathway involving benzoxazinones, which are known to participate in allelopathic plant defense interactions of several plants of high agronomic interest. The production of the defense chemicals by a donor plant (crop), the route and transformations of the chemicals released into the environment, and the uptake and phytotoxic effects on a target plant (weed) were all monitored. The results of this study, which is the first of its kind, allowed a complete dynamic characterization of the allelopathic phenomenon for benzoxazinones

    Interaction of 8-Hydroxyquinoline with Soil Environment Mediates Its Ecological Function

    Get PDF
    Background: Allelopathic functions of plant-released chemicals are often studied through growth bioassays assuming that these chemicals will directly impact plant growth. This overlooks the role of soil factors in mediating allelopathic activities of chemicals, particularly non-volatiles. Here we examined the allelopathic potential of 8-hydroxyquinoline (HQ), a chemical reported to be exuded from the roots of Centaurea diffusa. Methodology/Principal Findings: Growth bioassays and HQ recovery experiments were performed in HQ-treated soils (non-sterile, sterile, organic matter-enriched and glucose-amended) and untreated control soil. Root growth of either Brassica campestris or Phalaris minor was not affected in HQ-treated non-sterile soil. Soil modifications (organic matter and glucose amendments) could not enhance the recovery of HQ in soil, which further supports the observation that HQ is not likely to be an allelopathic compound. Hydroxyquinoline-treated soil had lower values for the CO2 release compared to untreated non-sterile soil. Soil sterilization significantly influenced the organic matter content, PO 4-P and total organic nitrogen levels. Conclusion/Significance: Here, we concluded that evaluation of the effect of a chemical on plant growth is not enough in evaluating the ecological role of a chemical in plant-plant interactions. Interaction of the chemical with soil factors largel

    Serotonin Augments Gut Pacemaker Activity via 5-HT3 Receptors

    Get PDF
    Serotonin (5-hydroxytryptamine: 5-HT) affects numerous functions in the gut, such as secretion, muscle contraction, and enteric nervous activity, and therefore to clarify details of 5-HT's actions leads to good therapeutic strategies for gut functional disorders. The role of interstitial cells of Cajal (ICC), as pacemaker cells, has been recognised relatively recently. We thus investigated 5-HT actions on ICC pacemaker activity. Muscle preparations with myenteric plexus were isolated from the murine ileum. Spatio-temporal measurements of intracellular Ca2+ and electric activities in ICC were performed by employing fluorescent Ca2+ imaging and microelectrode array (MEA) systems, respectively. Dihydropyridine (DHP) Ca2+ antagonists and tetrodotoxin (TTX) were applied to suppress smooth muscle and nerve activities, respectively. 5-HT significantly enhanced spontaneous Ca2+ oscillations that are considered to underlie electric pacemaker activity in ICC. LY-278584, a 5-HT3 receptor antagonist suppressed spontaneous Ca2+ activity in ICC, while 2-methylserotonin (2-Me-5-HT), a 5-HT3 receptor agonist, restored it. GR113808, a selective antagonist for 5-HT4, and O-methyl-5-HT (O-Me-5-HT), a non-selective 5-HT receptor agonist lacking affinity for 5-HT3 receptors, had little effect on ICC Ca2+ activity. In MEA measurements of ICC electric activity, 5-HT and 2-Me-5-HT caused excitatory effects. RT-PCR and immunostaining confirmed expression of 5-HT3 receptors in ICC. The results indicate that 5-HT augments ICC pacemaker activity via 5-HT3 receptors. ICC appear to be a promising target for treatment of functional motility disorders of the gut, for example, irritable bowel syndrome

    Search for heavy neutral leptons in final states with electrons, muons, and hadronically decaying tau leptons in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A search for heavy neutral leptons (HNLs) of Majorana or Dirac type using proton-proton collision data at = 13 TeV is presented. The data were collected by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 138 fb−1. Events with three charged leptons (electrons, muons, and hadronically decaying tau leptons) are selected, corresponding to HNL production in association with a charged lepton and decay of the HNL to two charged leptons and a standard model (SM) neutrino. The search is performed for HNL masses between 10 GeV and 1.5 TeV. No evidence for an HNL signal is observed in data. Upper limits at 95% confidence level are found for the squared coupling strength of the HNL to SM neutrinos, considering exclusive coupling of the HNL to a single SM neutrino generation, for both Majorana and Dirac HNLs. The limits exceed previously achieved experimental constraints for a wide range of HNL masses, and the limits on tau neutrino coupling scenarios with HNL masses above the W boson mass are presented for the first time

    Measurement of the polarizations of prompt and non-prompt J/ψ and ψ (2S) mesons produced in pp collisions at s\sqrt{s} = 13 TeV

    Get PDF
    The polarizations of prompt and non-prompt J∕ψ and ψ(2S) mesons are measured in proton-proton collisions at √ = 13 TeV, using data samples collected by the CMS experiment in 2017 and 2018, corresponding to a total integrated luminosity of 103.3 fb−1^{−1}. Based on the analysis of the dimuon decay angular distributions in the helicity frame, the polar anisotropy, , is measured as a function of the transverse momentum, T_T, of the charmonium states, in the 25–120 and 20–100 GeV ranges for the J∕ψ and ψ(2S), respectively. The non-prompt polarizations agree with predictions based on the hypothesis that, for T ≳ 25 GeV, the non-prompt J∕ψ and ψ(2S) are predominantly produced in two-body B meson decays. The prompt results clearly exclude strong transverse polarizations, even for T_T exceeding 30 times the J∕ψ mass, where tends to an asymptotic value around 0.3. Taken together with previous measurements, by CMS and LHCb at √ = 7 TeV, the prompt polarizations show a significant variation with T_T, at low T_T

    Observation of the J / ψ → ÎŒâș Ό⁻ ÎŒâș Ό⁻ decay in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for new physics in high-mass diphoton events from proton-proton collisions at √s = 13 TeV

    Get PDF
    Results are presented from a search for new physics in high-mass diphoton events from proton-proton collisions at sqrt(s) = 13 TeV. The data set was collected in 2016–2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb−1 . Events with a diphoton invariant mass greater than 500 GeV are considered. Two diferent techniques are used to predict the standard model backgrounds: parametric fts to the smoothly-falling background and a frst-principles calculation of the standard model diphoton spectrum at next-to-next-to-leading order in perturbative quantum chromodynamics calculations. The frst technique is sensitive to resonant excesses while the second technique can identify broad diferences in the invariant mass shape. The data are used to constrain the production of heavy Higgs bosons, Randall-Sundrum gravitons, the large extra dimensions model of Arkani-Hamed, Dimopoulos, and Dvali (ADD), and the continuum clockwork mechanism. No statistically signifcant excess is observed. The present results are the strongest limits to date on ADD extra dimensions and RS gravitons with a coupling parameter greater than 0.1

    A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements

    Get PDF
    In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I–VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers’ views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning
    • 

    corecore