409 research outputs found

    Discovery of X-ray eclipses from the transient source CXOGC J174540.0-290031 with XMM-Newton

    Full text link
    We present the XMM-Newton observations obtained during four revolutions in Spring and Summer 2004 of CXOGC J174540.0-290031, a moderately bright transient X-ray source, located at only 2.9" from SgrA*. We report the discovery of sharp and deep X-ray eclipses, with a period of 27,961+/-5 s and a duration of about 1,100+/-100 s, observed during the two consecutive XMM revolutions from August 31 to September 2. No deep eclipses were present during the two consecutive XMM revolutions from March 28 to April 1, 2004. The spectra during all four observations are well described with an absorbed power law continuum. While our fits on the power law index over the four observations yield values that are consistent with Gamma=1.6-2.0, there appears to be a significant increase in the column density during the Summer 2004 observations, i.e. the period during which the eclipses are detected. The intrinsic luminosity in the 2-10 keV energy range is almost constant with 1.8-2.3 x 10^34 (d_8kpc)^2 erg/s over the four observations. In the framework of eclipsing semidetached binary systems, we show that the eclipse period constrains the mass of the assumed main-sequence secondary star to less than 1.0 M_odot. Therefore, we deduce that CXOGC J174540.0-290031 is a low-mass X-ray binary (LMXB). Moreover the eclipse duration constrains the mass of the compact object to less than about 60 M_odot, which is consistent with a stellar mass black hole or a neutron star. The absence of deep X-ray eclipses during the Spring 2004 observations could be explained if the centroid of the X-ray emitting region moves from a position on the orbital plane to a point above the compact object, possibly coincident with the base of the jet which was detected in radio at this epoch. [Abstract truncated].Comment: A&A, accepted for publication (10 pages, 8 figures, 2 Tables

    Evidence for a Truncated Accretion Disc in the Low Luminosity Seyfert Galaxy, NGC 7213?

    Full text link
    We present the broad-band 0.6-150 keV Suzaku and Swift BAT spectra of the low luminosity Seyfert galaxy, NGC 7213. The time-averaged continuum emission is well fitted by a single powerlaw of photon index Gamma = 1.75 and from consideration of the Fermi flux limit we constrain the high energy cutoff to be 350 keV < E < 25 MeV. Line emission from both near-neutral iron K_alpha at 6.39 keV and highly ionised iron, from Fe_(xxv) and Fe_(xxvi), is strongly detected in the Suzaku spectrum, further confirming the results of previous observations with Chandra and XMM-Newton. We find the centroid energies for the Fe_(xxv) and Fe_(xxvi) emission to be 6.60 keV and 6.95 keV respectively, with the latter appearing to be resolved in the Suzaku spectrum. We show that the Fe_(xxv) and Fe_(xxvi) emission can result from a highly photo-ionised plasma of column density N_(H) ~ 3 x 10^(23) cm^(-2). A Compton reflection component, e.g., originating from an optically-thick accretion disc or a Compton-thick torus, appears either very weak or absent in this AGN, subtending < 1 sr to the X-ray source, consistent with previous findings. Indeed the absence of either neutral or ionised Compton reflection coupled with the lack of any relativistic Fe K signatures in the spectrum suggests that an inner, optically-thick accretion disc is absent in this source. Instead, the accretion disc could be truncated with the inner regions perhaps replaced by a Compton-thin Radiatively Inefficient Accretion Flow. Thus, the Fe_(xxv) and Fe_(xxvi) emission could both originate in ionised material perhaps at the transition region between the hot, inner flow and the cold, truncated accretion disc on the order of 10^(3) - 10^(4) gravitational radii from the black hole. The origin for the unresolved neutral Fe K_alpha emission is then likely to be further out, perhaps originating in the optical BLR or a Compton-thin pc-scale torus.Comment: 15 pages, 11 figures, accepted for publication by MNRA

    Multi-Wavelength Study of Sgr A*: The Short Time Scale Variability

    Full text link
    To understand the correlation and the radiation mechanism of flare emission in different wavelength bands, we have coordinated a number of telescopes to observe SgrA* simultaneously. We focus only on one aspect of the preliminary results of our multi-wavelength observing campaigns, namely, the short time scale variability of emission from SgrA* in near-IR, X-ray and radio wavelengths. The structure function analysis indicate most of the power spectral density is detected on hourly time scales in all wavelength bands. We also report minute time scale variability at 7 and 13mm placing a strong constraint on the nature of the variable emission. The hourly time scale variability can be explained in the context of a model in which the peak frequency of emission shifts toward lower frequencies as a self-absorbed synchrotron source expands adiabatically near the acceleration site. The short time scale variability, on the other hand, places a strong constraint on the size of the emitting region. Assuming that rapid minute time scale fluctuations of the emission is optically thick in radio wavelength, light travel arguments requires relativistic particle energy, thus suggesting the presence of outflow from SgrA*.Comment: 9 pages, 4 figures, The Galactic Center: A Window on the Nuclear Environment of Disk Galaxies ASP Conference Series, 2010 eds: M. Morris, D. Q. Wang and F. Yua

    A 100ks XMM-Newton view of the Seyfert 1.8 ESO113-G010. I. Discovery of large X-ray variability and study of the FeKalpha line complex

    Full text link
    (Abridged) We present here a long (100ks) XMM-Newton follow-up of the Seyfert 1.8 galaxy ESO113-G010 performed in November 2005, in order to study over a longer time-scale its main X-ray properties. The source was found in a higher/softer time-averaged flux state, and timing analysis of this source reveals strong, rapid variability. The Power Spectral Density (PSD) analysis indicates (at 95% c.l.) a break at 3.7 x 10^-4 Hz. This cut-off frequency is comparable to those measured in some other rapidly-variable Seyferts, such as MCG-6-30-15 and NGC4051. From the mass-luminosity-time-scale, we infer that M_BH ranges from 4 x 10^6 - 10^7 M_odot and the source is accreting at or close to the Eddington rate (or even higher). The existing data cannot distinguish between spectral pivoting of the continuum and a two-component origin for the spectral softening, primarily because the data do not span a broad enough flux range. In the case of the two-component model, the fractional offsets measured in the flux-flux plots increase significantly toward higher energies (similar to what is observed in MCG-6-30-15) as expected if there exists a constant reflection component. Contrary to May 2001, no significant highly redshifted emission line is observed (which might be related to the source flux level), while two narrow emission lines at about 6.5keV and 7keV are observed. The S/N is not high enough to establish if the lines are variable or constant. As already suggested by the 2001 observation, no significant constant narrow 6.4keV FeK line (EW~32eV) is observed, hence excluding any dominant emission from distant cold matter such as a torus in this Seyfert type 1.8 galaxy.Comment: Accepted for publication in A&A, 10 pages, 11 figures, 2 table

    An extreme, blueshifted iron line profile in the Narrow Line Seyfert 1 PG 1402+261; an edge-on accretion disk or highly ionized absorption?

    Full text link
    We report on a short XMM-Newton observation of the radio-quiet Narrow Line Seyfert 1 PG 1402+261. The EPIC X-ray spectrum of PG 1402+261 shows a strong excess of counts between 6-9 keV in the rest frame. This feature can be modeled by an unusually strong (equivalent width 2 keV) and very broad (FWHM velocity of 110000 km/s) iron K-shell emission line. The line centroid energy at 7.3 keV appears blue-shifted with respect to the iron Kalpha emission band between 6.4-6.97 keV, while the blue-wing of the line extends to 9 keV in the quasar rest frame. The line profile can be fitted by reflection from the inner accretion disk, but an inclination angle of >60 deg is required to model the extreme blue-wing of the line. Furthermore the extreme strength of the line requires a geometry whereby the hard X-ray emission from PG 1402+261 above 2 keV is dominated by the pure-reflection component from the disk, while little or none of the direct hard power-law is observed. Alternatively the spectrum above 2 keV may instead be explained by an ionized absorber, if the column density is sufficiently high (N_H > 3 x 10^23 cm^-2) and if the matter is ionized enough to produce a deep (tau~1) iron K-shell absorption edge at 9 keV. This absorber could originate in a large column density, high velocity outflow, perhaps similar to those which appear to be observed in several other high accretion rate AGN. Further observations, especially at higher spectral resolution, are required to distinguish between the accretion disk reflection or outflow scenarios.Comment: Accepted for publication in ApJ (18 pages, 5 figures, 1 table

    A deep X-ray view of the bare AGN Ark 120. III. X-ray timing analysis and multiwavelength variability

    Get PDF
    We present the spectral/timing properties of the bare Seyfert galaxy Ark 120 through a deep ~420ks XMM-Newton campaign plus recent NuSTAR observations and a ~6-month Swift monitoring campaign. We investigate the spectral decomposition through fractional rms, covariance and difference spectra, finding the mid- to long-timescale (~day-year) variability to be dominated by a relatively smooth, steep component, peaking in the soft X-ray band. Additionally, we find evidence for variable FeK emission red-ward of the FeK-alpha core on long timescales, consistent with previous findings. We detect a clearly-defined power spectrum which we model with a power law with a slope of alpha ~ 1.9. By extending the power spectrum to lower frequencies through the inclusion of Swift and RXTE data, we find tentative evidence of a high-frequency break, consistent with existing scaling relations. We also explore frequency-dependent Fourier time lags, detecting a negative ('soft') lag for the first time in this source with the 0.3-1 keV band lagging behind the 1-4 keV band with a time delay of ~900s. Finally, we analyze the variability in the optical and UV bands using the Optical/UV Monitor on-board XMM-Newton and the UVOT on-board Swift and search for time-dependent correlations between the optical/UV/X-ray bands. We find tentative evidence for the U-band emission lagging behind the X-rays with a time delay of 2.4 +/- 1.8 days, which we discuss in the context of disc reprocessing

    Probing the face-on disc-corona system of the bare AGN Mrk 110 from UV to hard X-rays: A moderate changing-state AGN?

    Get PDF
    Context. The X-ray broadband spectra of the bare active galactic nucleus (AGN) Mrk 110, obtained by simultaneous XMM-Newton and NuSTAR observations performed in November 2019 and April 2020, are characterised by the presence of a prominent and absorption-free smooth soft X-ray excess, moderately broad O VII and Fe Kα emission lines, and a lack of a strong Compton hump. The disc-corona system is almost viewed face-on as inferred from the O VII accretion disc lines. While relativistic reflection as the sole emission is ruled out, a simplified combination of soft and hard Comptonisation (using COMPTT) from a warm and a hot corona, plus mild relativistic disc reflection (occuring at a few 10 s Rg) reproduces the data very well.Aims. We aim to confirm the physical origin of the soft X-ray excess of Mrk 110 and to determine its disc-corona system properties from its energetics using two new sophisticated models: REXCOR and RELAGN, respectively.Methods. We applied these models to the 0.3–79 keV X-ray broadband spectra and to the spectral energy distribution (SED) from UV to hard X-rays, respectively.Results. At both epochs, the inferred high values of the warm-corona heating from the X-ray broadband spectral analysis using REXCOR confirm that the soft X-ray excess of Mrk 110 mainly originates from a warm corona rather than relativistic reflection. The intrinsic best-fit SED determined at both epochs using RELAGN show a high X-ray contribution relative to the UV and are very well reproduced by a warm and hot corona plus mild relativistic reflection. The outer radii of the hot and warm corona are located at a few 10 s and ∌100 Rg, respectively. Moreover, combining the inferred low Eddington ratio (approximatively a few percent) from this work, and previous multi-wavelength spectral and timing studies suggest that Mrk 110 could be classified as a moderate changing-state AGN.Conclusions. Our analysis confirms the existence of a warm corona as a significant contribution to the soft X-ray excess and UV emission in Mrk 110, adding to growing evidence that AGN accretion deviates from standard disc theory. This strengthens the importance of long-term multi-wavelength monitoring on both single targets and large AGN surveys to reveal the real nature of the disc-corona system in AGNs

    High-spin states with seniority v=4,4,6 in 119-126Sn

    Full text link
    The 119-126Sn nuclei have been produced as fission fragments in two reactions induced by heavy ions: 12C+238U at 90 MeV bombarding energy, 18O+208Pb at 85 MeV. Their level schemes have been built from gamma rays detected using the Euroball array. High-spin states located above the long-lived isomeric states of the even- and odd-A 120-126Sn nuclei have been identified. Moreover isomeric states lying around 4.5 MeV have been established in 120,122,124,126Sn from the delayed coincidences between the fission fragment detector SAPhIR and the Euroball array. The states located above 3-MeV excitation energy are ascribed to several broken pairs of neutrons occupying the nu h11/2 orbit. The maximum value of angular momentum available in such a high-j shell, i.e. for mid-occupation and the breaking of the three neutron pairs, has been identified. This process is observed for the first time in spherical nuclei.Comment: 20 pages, 22 figures, 12 tables, accepted for publication in Physical Review

    Iron line profiles in Suzaku spectra of bare Seyfert galaxies

    Full text link
    We methodically model the broad-band Suzaku spectra of a small sample of six 'bare' Seyfert galaxies: Ark 120, Fairall 9, MCG-02-14-009, Mrk 335, NGC 7469 and SWIFT J2127.4+5654. The analysis of bare Seyferts allows a consistent and physical modelling of AGN due to a weak amount of any intrinsic warm absorption, removing the degeneracy between the spectral curvature due to warm absorption and the red-wing of the Fe K region. Through effective modelling of the broad-band spectrum and investigating the presence of narrow neutral or ionized emission lines and reflection from distant material, we obtain an accurate and detailed description of the Fe K line region using models such as laor, kerrdisk and kerrconv. Results suggest that ionized emission lines at 6.7 keV and 6.97 keV (particularly Fe XXVI) are relatively common and the inclusion of these lines can greatly affect the parameters obtained with relativistic models i.e. spin, emissivity, inner radius of emission and inclination. Moderately broad components are found in all objects, but typically the emission originates from tens of Rg, rather than within <6Rg of the black hole. Results obtained with kerrdisk line profiles suggest an average emissivity of q~2.3 at intermediate spin values with all objects ruling out the presence of a maximally spinning black hole at the 90% confidence level. We also present new spin constraints for Mrk 335 and NGC 7469 with intermediate values of a=0.70(+0.12,-0.01) and a=0.69(+0.09,-0.09) respectively.Comment: 19 pages, 7 figures, 9 tables, MNRAS accepte

    Evolution of shell structure in neutron-rich calcium isotopes

    Full text link
    We employ interactions from chiral effective field theory and compute the binding energies and low-lying excitations of calcium isotopes with the coupled-cluster method. Effects of three-nucleon forces are included phenomenologically as in-medium two-nucleon interactions, and the coupling to the particle continuum is taken into account using a Berggren basis. The computed ground-state energies and the low-lying 2+ states for the isotopes 42,48,50,52Ca are in good agreement with data, and we predict the excitation energy of the first 2+ state in 54Ca at 1.9 MeV, displaying only a weak sub-shell closure. In the odd-mass nuclei 53,55,61Ca we find that the positive parity states deviate strongly from the naive shell model.Comment: 5 pages, 4 figures; small correction of effective 3NF and slight change of the corresponding parameters; updated figures and tables; main results and conclusions unchange
    • 

    corecore