62 research outputs found

    Early interneuron dysfunction in ALS: Insights from a mutant sod1 zebrafish model

    Get PDF
    Objective: To determine, when, how, and which neurons initiate the onset of pathophysiology in amyotrophic lateral sclerosis (ALS) using a transgenic mutant sod1 zebrafish model and identify neuroprotective drugs. Methods: Proteinopathies such as ALS involve mutant proteins that misfold and activate the heat shock stress response (HSR). The HSR is indicative of neuronal stress, and we used a fluorescent hsp70-DsRed reporter in our transgenic zebrafish to track neuronal stress and to measure functional changes in neurons and muscle over the course of the disease. Results: We show that mutant sod1 fish first exhibited the HSR in glycinergic interneurons at 24 hours postfertilization (hpf). By 96 hpf, we observed a significant reduction in spontaneous glycinergic currents induced in spinal motor neurons. The loss of inhibition was followed by increased stress in the motor neurons of symptomatic adults and concurrent morphological changes at the neuromuscular junction (NMJ) indicative of denervation. Riluzole, the only approved ALS drug and apomorphine, an NRF2 activator, reduced the observed early neuronal stress response. Interpretation: The earliest event in the pathophysiology of ALS in the mutant sod1 zebrafish model involves neuronal stress in inhibitory interneurons, resulting from mutant Sod1 expression. This is followed by a reduction in inhibitory input to motor neurons. The loss of inhibitory input may contribute to the later development of neuronal stress in motor neurons and concurrent inability to maintain the NMJ. Riluzole, the approved drug for use in ALS, modulates neuronal stress in interneurons, indicating a novel mechanism of riluzole action

    Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes

    Get PDF
    Diffusion MRI offers great potential in studying the human brain microstructure and connectivity. However, diffusion images are marred by technical problems, such as image distortions and spurious signal loss. Correcting for these problems is non-trivial and relies on having a mechanism that predicts what to expect. In this paper we describe a novel way to represent and make predictions about diffusion MRI data. It is based on a Gaussian process on one or several spheres similar to the Geostatistical method of “Kriging”. We present a choice of covariance function that allows us to accurately predict the signal even from voxels with complex fibre patterns. For multi-shell data (multiple non-zero b-values) the covariance function extends across the shells which means that data from one shell is used when making predictions for another shell

    Microstructural characterisation of normal and malignant human prostate tissue with VERDICT MRI

    Get PDF
    Objectives Demonstrate the feasibility of the recently introduced VERDICT (Vascular, Extracellular and Restricted DIffusion for Cytometry in Tumours) framework for imaging prostate cancer with diffusion-weighted Magnetic Resonance Imaging (DW-MRI) within a clinical setting. Materials and Methods VERDICT is a non-invasive microstructure imaging technique that combines an in-depth diffusion MRI acquisition with a mathematical model to estimate and map microstructural tissue parameters such as cell size and density, and vascular perfusion. In total 8 patients underwent 3T MRI using 9 different b values (100-3000 s/mm2). All patients were imaged before undergoing biopsy. Experiments with VERDICT analysed DW-MRI data from patients with histologically confirmed prostate cancer in areas of cancerous and benign peripheral zone tissue. For comparison we also fitted commonly used diffusion models such as the Apparent Diffusion Coefficient (ADC), the Intravoxel Incoherent Motion (IVIM) and the Kurtosis model. We also investigated correlations of ADC and Kurtosis with VERDICT parameters to gain some biophysical insight into the various parameter values. Results 8 patients had prostate cancer in the peripheral zone with Gleason score 3+3 (n=1), 3+4 (n=6) and 4+3 (n=1). The VERDICT model identified a significant increase in the intracellular and vascular volume fraction estimates in cancerous compared to benign peripheral zone, as well as a significant decrease in the volume of the extracellular-extravascular space (EES) (P=0.05). This is in agreement with manual segmentation of the biopsies for prostate tissue component analysis, which found proliferation of epithelium, loss of surrounding stroma and an increase in vasculature. The standard ADC and Kurtosis parameters were also significantly different (P=0.05) between tissue types. There was no significant difference in any of the IVIM parameters (P=0.11 to 0.29). VERDICT parametric maps from voxel by voxel fitting clearly differentiated cancer from benign regions. ADC and Kurtosis parameters correlated most strongly with VERDICT’s intracellular volume fraction, but also moderately with the EES and vascular fractions. Conclusions VERDICT distinguished tumour from benign areas, while revealing differences in microstructure descriptors such as cellular, vascular and EES fractions. The parameters of ADC and Kurtosis models also discriminated between cancer and benign regions. However, VERDICT provides more specific information that disentangles the various microstructural features underlying the changes in ADC and Kurtosis. These results highlight the clinical potential of the VERDICT framework and motivate the construction of a shorter, clinically viable, imaging protocol to enable larger trials leading to widespread translation of the method

    INNOVATE: A prospective cohort study combining serum and urinary biomarkers with novel diffusion-weighted magnetic resonance imaging for the prediction and characterization of prostate cancer

    Get PDF
    BACKGROUND: Whilst multi-parametric magnetic resonance imaging (mp-MRI) has been a significant advance in the diagnosis of prostate cancer, scanning all patients with elevated prostate specific antigen (PSA) levels is considered too costly for widespread National Health Service (NHS) use, as the predictive value of PSA levels for significant disease is poor. Despite the fact that novel blood and urine tests are available which may predict aggressive disease better than PSA, they are not routinely employed due to a lack of clinical validity studies. Furthermore approximately 40% of mp-MRI studies are reported as indeterminate, which can lead to repeat examinations or unnecessary biopsy with associated patient anxiety, discomfort, risk and additional costs. METHODS AND ANALYSIS: We aim to clinically validate a panel of minimally invasive promising blood and urine biomarkers, to better select patients that will benefit from a multiparametric prostate MRI. We will then test whether the performance of the mp-MRI can be improved by the addition of an advanced diffusion-weighted MRI technique, which uses a biophysical model to characterise tissue microstructure called VERDICT; Vascular and Extracellular Restricted Diffusion for Cytometry in Tumours. INNOVATE is a prospective single centre cohort study in 365 patients. mpMRI will act as the reference standard for the biomarker panel. A clinical outcome based reference standard based on biopsy, mp-MRI and follow-up will be used for VERDICT MRI. We expect the combined effect of biomarkers and VERDICT MRI will improve care by better detecting aggressive prostate cancer early and make mp-MRI before biopsy economically viable for universal NHS adoption. ETHICS AND DISSEMINATION: INNOVATE received UK Research Ethics Committee approval on 23rd December 2015 by the NRES Committee London—Surrey Borders with REC reference 15/LO/0692. REGISTRATION DETAILS: INNOVATE is registered on ClinicalTrials.gov, with reference NCT0268927

    Sprouty4 Is an Endogenous Negative Modulator of TrkA Signaling and Neuronal Differentiation Induced by NGF

    Get PDF
    The Sprouty (Spry) family of proteins represents endogenous regulators of downstream signaling pathways induced by receptor tyrosine kinases (RTKs). Using real time PCR, we detect a significant increase in the expression of Spry4 mRNA in response to NGF, indicating that Spry4 could modulate intracellular signaling pathways and biological processes induced by NGF and its receptor TrkA. In this work, we demonstrate that overexpression of wild-type Spry4 causes a significant reduction in MAPK and Rac1 activation and neurite outgrowth induced by NGF. At molecular level, our findings indicate that ectopic expression of a mutated form of Spry4 (Y53A), in which a conserved tyrosine residue was replaced, fail to block both TrkA-mediated Erk/MAPK activation and neurite outgrowth induced by NGF, suggesting that an intact tyrosine 53 site is required for the inhibitory effect of Spry4 on NGF signaling. Downregulation of Spry4 using small interference RNA knockdown experiments potentiates PC12 cell differentiation and MAPK activation in response to NGF. Together, these findings establish a new physiological mechanism through which Spry4 regulates neurite outgrowth reducing not only the MAPK pathway but also restricting Rac1 activation in response to NGF

    Evaluation of PSA and PSA Density in a Multiparametric Magnetic Resonance Imaging-Directed Diagnostic Pathway for Suspected Prostate Cancer: The INNOVATE Trial

    Get PDF
    OBJECTIVES: To assess the clinical outcomes of mpMRI before biopsy and evaluate the space remaining for novel biomarkers. METHODS: The INNOVATE study was set up to evaluate the validity of novel fluidic biomarkers in men with suspected prostate cancer who undergo pre-biopsy mpMRI. We report the characteristics of this clinical cohort, the distribution of clinical serum biomarkers, PSA and PSA density (PSAD), and compare the mpMRI Likert scoring system to the Prostate Imaging–Reporting and Data System v2.1 (PI-RADS) in men undergoing biopsy. RESULTS: 340 men underwent mpMRI to evaluate suspected prostate cancer. 193/340 (57%) men had subsequent MRI-targeted prostate biopsy. Clinically significant prostate cancer (csigPCa), i.e., overall Gleason ≥ 3 + 4 of any length OR maximum cancer core length (MCCL) ≥4 mm of any grade including any 3 + 3, was found in 96/195 (49%) of biopsied patients. Median PSA (and PSAD) was 4.7 (0.20), 8.0 (0.17), and 9.7 (0.31) ng/mL (ng/mL/mL) in mpMRI scored Likert 3,4,5 respectively for men with csigPCa on biopsy. The space for novel biomarkers was shown to be within the group of men with mpMRI scored Likert3 (178/340) and 4 (70/350), in whom an additional of 40% (70/178) men with mpMRI-scored Likert3, and 37% (26/70) Likert4 could have been spared biopsy. PSAD is already considered clinically in this cohort to risk stratify patients for biopsy, despite this 67% (55/82) of men with mpMRI-scored Likert3, and 55% (36/65) Likert4, who underwent prostate biopsy had a PSAD below a clinical threshold of 0.15 (or 0.12 for men aged <50 years). Different thresholds of PSA and PSAD were assessed in mpMRI-scored Likert4 to predict csigPCa on biopsy, to achieve false negative levels of ≤5% the proportion of patients whom who test as above the threshold were unsuitably high at 86 and 92% of patients for PSAD and PSA respectively. When PSA was re tested in a sub cohort of men repeated PSAD showed its poor reproducibility with 43% (41/95) of patients being reclassified. After PI-RADS rescoring of the biopsied lesions, 66% (54/82) of the Likert3 lesions received a different PI-RADS score. CONCLUSIONS: The addition of simple biochemical and radiological markers (Likert and PSAD) facilitate the streamlining of the mpMRI-diagnostic pathway for suspected prostate cancer but there remains scope for improvement, in the introduction of novel biomarkers for risk assessment in Likert3 and 4 patients, future application of novel biomarkers tested in a Likert cohort would also require re-optimization around Likert3/PI-RADS2, as well as reproducibility testing

    Studying neuroanatomy using MRI

    Get PDF
    The study of neuroanatomy using imaging enables key insights into how our brains function, are shaped by genes and environment, and change with development, aging, and disease. Developments in MRI acquisition, image processing, and data modelling have been key to these advances. However, MRI provides an indirect measurement of the biological signals we aim to investigate. Thus, artifacts and key questions of correct interpretation can confound the readouts provided by anatomical MRI. In this review we provide an overview of the methods for measuring macro- and mesoscopic structure and inferring microstructural properties; we also describe key artefacts and confounds that can lead to incorrect conclusions. Ultimately, we believe that, though methods need to improve and caution is required in its interpretation, structural MRI continues to have great promise in furthering our understanding of how the brain works

    Negative feedback regulation of the ERK1/2 MAPK pathway

    Get PDF
    The extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signalling pathway regulates many cellular functions, including proliferation, differentiation, and transformation. To reliably convert external stimuli into specific cellular responses and to adapt to environmental circumstances, the pathway must be integrated into the overall signalling activity of the cell. Multiple mechanisms have evolved to perform this role. In this review, we will focus on negative feedback mechanisms and examine how they shape ERK1/2 MAPK signalling. We will first discuss the extensive number of negative feedback loops targeting the different components of the ERK1/2 MAPK cascade, specifically the direct posttranslational modification of pathway components by downstream protein kinases and the induction of de novo gene synthesis of specific pathway inhibitors. We will then evaluate how negative feedback modulates the spatiotemporal signalling dynamics of the ERK1/2 pathway regarding signalling amplitude and duration as well as subcellular localisation. Aberrant ERK1/2 activation results in deregulated proliferation and malignant transformation in model systems and is commonly observed in human tumours. Inhibition of the ERK1/2 pathway thus represents an attractive target for the treatment of malignant tumours with increased ERK1/2 activity. We will, therefore, discuss the effect of ERK1/2 MAPK feedback regulation on cancer treatment and how it contributes to reduced clinical efficacy of therapeutic agents and the development of drug resistance
    corecore