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Microstructural characterisation of normal and malignant human prostate 

tissue with VERDICT MRI 

 

Abstract  

 

Objectives Demonstrate the feasibility of the recently introduced VERDICT 

(Vascular, Extracellular and Restricted DIffusion for Cytometry in Tumours) 

framework for imaging prostate cancer with diffusion-weighted Magnetic Resonance 

Imaging (DW-MRI) within a clinical setting. 

 

Materials and Methods VERDICT is a non-invasive microstructure imaging 

technique that combines an in-depth diffusion MRI acquisition with a mathematical 

model to estimate and map microstructural tissue parameters such as cell size and 

density, and vascular perfusion. In total 8 patients underwent 3T MRI using 9 

different b values (100-3000 s/mm2).  All patients were imaged before undergoing 

biopsy. Experiments with VERDICT analysed DW-MRI data from patients with 

histologically confirmed prostate cancer in areas of cancerous and benign peripheral 

zone tissue. For comparison we also fitted commonly used diffusion models such as 

the Apparent Diffusion Coefficient (ADC), the Intravoxel Incoherent Motion (IVIM) 

and the Kurtosis model. We also investigated correlations of ADC and Kurtosis with 

VERDICT parameters to gain some biophysical insight into the various parameter 

values. 

Results 8 patients had prostate cancer in the peripheral zone with Gleason score 3+3 

(n=1), 3+4 (n=6) and 4+3 (n=1). The VERDICT model identified a significant 

increase in the intracellular and vascular volume fraction estimates in cancerous 



	
   2	
  

compared to benign peripheral zone, as well as a significant decrease in the volume of 

the extracellular-extravascular space (EES) (P=0.05). This is in agreement with 

manual segmentation of the biopsies for prostate tissue component analysis, which 

found proliferation of epithelium, loss of surrounding stroma and an increase in 

vasculature. The standard ADC and Kurtosis parameters were also significantly 

different (P=0.05) between tissue types. There was no significant difference in any of 

the IVIM parameters (P=0.11 to 0.29). VERDICT parametric maps from voxel by 

voxel fitting clearly differentiated cancer from benign regions. ADC and Kurtosis 

parameters correlated most strongly with VERDICT’s intracellular volume fraction, 

but also moderately with the EES and vascular fractions. 

Conclusions VERDICT distinguished tumour from benign areas, while revealing 

differences in microstructure descriptors such as cellular, vascular and EES fractions. 

The parameters of ADC and Kurtosis models also discriminated between cancer and 

benign regions. However, VERDICT provides more specific information that 

disentangles the various microstructural features underlying the changes in ADC and 

Kurtosis.  These results highlight the clinical potential of the VERDICT framework 

and motivate the construction of a shorter, clinically viable, imaging protocol to 

enable larger trials leading to widespread translation of the method. 

Key words: VERDICT MRI, prostate cancer, cancer imaging, microstructure, 

compartment model.  
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Introduction 

 

Prostate cancer is the most common cancer among males in all economically 

developed countries (1). The standard procedure to provide a diagnosis of the disease 

is transrectal prostate biopsy, which is invasive with possible unpleasant side effects 

(2) and is prone to error (3). Imaging based diagnostic strategies, using techniques 

such as multi-parametric magnetic resonance imaging (MRI), show great promise (4) 

providing useful information on the location and the stage of disease. Diffusion-

weighted MRI (DW-MRI) is an integral component of the multi-parametric MRI 

examination, because of its unique sensitivity to the microscopic structure of the 

tissue. In particular, histological features such as the cellular density, cellular size and 

shape and cellular arrangement, all influence tissue-water mobility, so differences in 

these features produce image contrast in DW-MRI. These same microstructural 

characteristics, are evaluated by histopathologists to determine the Gleason grade of 

prostate cancers. Hence, DW-MRI offers great potential value as a non-invasive 

diagnostic probe for cancer pathology.  

Most DW-MRI studies have used the technique in its simplest form by calculating the 

apparent diffusion coefficient (ADC) to identify clinically significant tumour foci 

more clearly (5, 6). In general, ADC values are lower in prostate carcinoma compared 

to healthy tissue and are believed to reflect the highly cellular environment of 

neoplastic tissue, which constrains water mobility. However, this simplified model of 

water diffusion remains a blunt tool, which fails to discriminate the variety of 

histological changes (cell density, size, shape, permeability, subcellular architecture, 

and vascular perfusion effects) that occur within cancers. Indeed, the overall 

sensitivity of ADC as a quantitative determinant of the presence or absence of tumour 
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within a given region remains limited, as ADC values in prostatic cancer and in 

benign prostatic tissue vary widely and overlap substantially (7-9). Biophysical 

mechanisms affect ADC in different ways that can even compete and cancel each 

other. Furthermore, the simultaneous dependence of ADC on a variety of histological 

features simultaneously means that it lacks biological specificity; a factor which likely 

limits its ability to distinguish cancer from other common pathologies, such as 

prostatitis and hyperplasia.  

A variety of more sophisticated DW-MRI models have recently been reported to 

improve sensitivity and specificity for cancer diagnosis.  

Diffusion kurtosis imaging (DKI) is a generalisation of ADC estimation (10) that 

quantifies the Gaussian and non-Gaussian components of the diffusion behaviour in 

tissue. Several studies have demonstrated greater discriminatory sensitivity of DKI for 

benign and prostate cancer tissue than standard ADC (11, 12). Yet, as for ADC, DKI 

lacks specificity to the underlying microstructural features that cause the changes 

(13).  

Le Bihan et al (14)  proposed the intravoxel incoherent motion (IVIM) model to 

separate “pure” water diffusion effects in the tissue from pseudo-diffusion of water in 

the blood capillary network. IVIM characterises water dispersion as a combination of 

a slow component associated with Brownian motion and a fast component associated 

with the bulk motion of molecules inside microcapillaries (14, 15). IVIM has been 

used to study various cancer types such as breast (16), prostate (9) and pancreatic (17, 

18) tumours, showing improvement in data description compared to ADC. However, 

its description of diffusion in the cellular component of the tissue remains simplistic: 

it does not account for cellular geometry and compartmentalisation.  This has led to 
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sometimes poor reproducibility and unreliable estimates of both fast and slow 

diffusion parameters from the DW-MRI signal (9, 19-22).  

The recent VERDICT framework (23) uses a three compartment tissue model 

designed to capture the main histological features that influence the DWI signal from 

in-vivo cancer tumours. The three compartments account explicitly for i) water 

trapped in cells, ii) water in the vascular network, and iii) interstitial water. Thus, in 

contrast to ADC, Kurtosis and IVIM models, VERDICT provides estimates of 

specific tissue properties such as the size and packing density of the cells, the vascular 

and extracellular-extravascular space (EES) volume fractions. The original 

presentation of VERDICT demonstrated its use in tumour xenograft models of 

colorectal cancer (23). Experiments identified and quantified i) known differences in 

the microstructure of two human colorectal tumours (LS174T and SW1222) with 

differing cellular and vascular phenotypes; and ii) a significant decrease in cell size 

following administration of a chemotherapeutic agent indicating Apoptotic Volume 

Decrease. In contrast the standard ADC and IVIM models failed to identify either 

difference. These results show promise for the potential of the VERDICT framework 

for non-invasive histology and motivate translation to clinical practice for providing 

sensitive biomarkers of tumour type without the need for biopsy. 

This feasibility study assesses the ability of the VERDICT model to differentiate 

between benign and cancerous prostate tissue in a clinical setting, while comparing its 

performance with more established models (ADC, Kurtosis, IVIM). The cellular and 

vascular architecture of the normal prostatic tissue changes dramatically with disease.  

Notably in prostate carcinoma there is profound increase of glandular elements, which 

coincides with the proliferation of epithelial cells as well as capillary 
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neovascularization (13, 24). VERDICT is designed to reflect these changes as the 

intracellular and vascular volume fractions are influenced by the signal from these 

cellular and vascular structures (Figure 1). To test its potential, we acquired uniquely 

rich DW-MRI data sets with a wide range of diffusion times and diffusion weightings 

from a small set of prostate-cancer patients. This data set demonstrates the feasibility 

of VERDICT for providing non-invasive measurements of histological parameters in 

a clinical setting and motivates the construction of more economical protocols for 

widespread application of VERDICT in the clinic.  

Materials and Methods 

 

Patient population This study was performed with informed patient consent and 

local ethics committee approval. The standard of reference was histology following 

transperineal template mapping (TPM) biopsy (25). TPM biopsies systematically 

sample the whole prostate and therefore provide high accuracy for the detection of 

clinically significant prostate cancer tumours. Between October 2012 and July 2013, 8 

patients with elevated PSA levels consented to have multiple b value DW-MRI as 

described below. The inclusion criteria for the patients of this study for VERDICT 

analysis were (i) no prior hormonal or radiation treatment and (ii) a region of cancer 

on MRI in the peripheral zone (PZ), with histologically positive results for cancer in 

the corresponding region confirmed after the MRI scan. All 8 patients met our 

inclusion criteria for VERDICT analysis and were pristine patients 

  

MRI acquisition 

We imaged 8 patients (prior to TPM biopsy) on a Philips Achieva 3T MRI 

scanner using conventional multi-parametric MRI (26, 27) supplemented by 
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additional DW-MRI sequences specifically for VERDICT modelling. Imaging used a 

32 channel cardiac coil with the patient in the supine position.  For anatomical 

imaging, the entire prostate gland was imaged with a T2-weighted acquisition (echo 

time (TE)= 100ms, repetition time (TR)= 5407ms, flip angle 90°, matrix 448×448, 

field of view (FOV) = 180x180mm2, 3mm slice thickness, 30 slices). DW-MRI was 

performed in the axial plane using a pulse gradient spin echo (PGSE) sequence, with 

data acquired using single-shot echo planar imaging (EPI). Three orthogonal 

directions were used for each of the 9 b values (100, 200, 400, 800, 1000, 1500, 2000, 

2500, 3000 s/mm2). The DW-MRI sequence was acquired with a voxel size of 

1.3×1.3×5mm3, 5mm slice thickness, 14 slices and FOV=220×220mm2, and images 

were reconstructed to a 176×176 matrix size. More parameters are detailed in Table 1. 

The data was normalised to avoid T2 dependence with a b=0 image for every echo 

time (TE). The total duration of the scan for each patient was approximately 35 

minutes, which is at the limit of what the patients would tolerate. As such this 

provides the richest possible data for assessing the potential benefits of VERDICT 

MRI.  

 

Image Analysis 

Based on multi-parametric MRI findings, an experienced radiologist  (S.P., with 9 

years of experience in prostate MR imaging;) contoured the focal areas 

most suspicious for tumour within the PZ of the prostate. The MRI suspicious regions 

of interest (ROI) were subsequently targeted and confirmed as cancer by TPM biopsy. 

The ROIs were chosen to be as large as possible, while having minimal contamination 

from unintended tissues. For the purposes of image interpretation the tumour ROIs 

were defined as a focal area that displayed i) local low signal intensity on T2-
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weighted images and/or ii) high intensity on a DW image with high b value (Figure 

2).  All 8 patients with PZ identified suspicious MRI findings had histologically-

confirmed tumour on targeted biopsy cores. Following review of the biopsy result to 

confirm the absence of tumour on the contralateral side of the PZ, the same 

radiologist located an ROI for each patient in an area of benign PZ.  

 

Data Processing 

We fit the ADC, Kurtosis, IVIM and VERDICT models to the data using a similar 

iterative optimization procedure to (23, 28) that accounts for local minima and Rician 

noise. The experiments first fit the models to data averaged over all voxels within 

tumour and benign regions and subsequently in each voxel. The signal to noise ratio 

(SNR) was calculated using the method described in (29) that accounts for the 

spatially variant noise in the DW-MR images. The median SNR, at b=0, for our 

patient data sets was 14. 

 

Mathematical models 

The ADC model is a simple monoexponential description of the signal decay as a 

function of b; it assumes an isotropic Gaussian distribution of water-molecule 

displacements and has one parameter, the ADC d. The normalised signal is 

 𝑆 = exp −𝑏𝑑 . 1 

 

The diffusion Kurtosis model generalises the ADC model to relax the assumption of 

Gaussian water dispersion. It has two parameters K, and Dk. The diffusivity parameter 

Dk is similar to the ADC parameter, while the kurtosis parameter K quantifies the 
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deviation of the dispersion pattern from a Gaussian distribution. The normalised 

signal under the Kurtosis model is 

 𝑆 =   exp −𝑏𝐷! +
1
6 𝑏

!𝐷!!𝐾 . 2 

 

The IVIM model is biexponential assuming ADC models for each of two non-

exchanging pools of water molecules, one vascular and one cellular. The parameters 

of the model are ffast fslow, Dfast, and Dslow, where ffast, Dfast and fslow, Dslow are the 

volume fraction and the diffusion coefficient associated with the fast (vascular) and 

the slow (cellular) compartments, respectively, with ffast + fslow = 1. The normalised 

signal is 

 𝑆 =   𝑓!"#$  exp  (−𝑏𝐷!"#$  )+ 𝑓!"#$  exp  (−𝑏𝐷!"#$  ). 3 

 

VERDICT is a three-compartment model that characterises water diffusion in 

the vascular, extracellular-extravascular space (EES) and intracellular (IC) 

compartments in tumours. Mathematically, VERDICT is the sum of three parametric 

models, each describing the diffusion MR signal in a separate population of water 

from one of the three components. The model assumes no exchange between the three 

water populations. The normalised signal for the VERDICT model is  

 
𝑆 =    𝑓!

!

!!!

𝑆! 4 

where 𝑓!   is the proportion of signal with no diffusion weighting (b=0) from water 

molecules in population 𝑖, 0 ≤ 𝑓!   ≤ 1, 𝑓!!
!!! = 1.  
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As specified in (22), the precise forms of the model components are application 

dependent. For prostate tissue, we use restricted diffusion in impermeable spheres 

(30) to model the signal for the IC compartment. This compartment has fIC 

(IC volume fraction), dIC, (IC diffusivity) and cell radius R as parameters. The model 

for the EES compartment uses an isotropic diffusion tensor (DT) model (31), so it has 

fEES (EES volume fraction) and dEES (diffusivity EES) as parameters. The vascular 

model assumes isotropically restricted water in cylinders with uniformly 

distributed orientations and zero diameter (AstroSticks in the terminology of (28)) and 

has fVASC (vascular volume fraction) and P (pseudo-diffusivity) as parameters. A 

schematic representation of the VERDICT model for prostate tissue is in Figure 1.  

In total we estimated 3 independent parameters for this study: fIC, fEES, and R. 

The other volume fraction fVASC= (1- fIC -fEES), and the diffusion and pseudo-diffusion 

coefficients were fixed to values that minimise fitting error averaged over all PZ 

voxels using data sets that were not included in the VERDICT analysis: dIC = dEES = 

2×10-9m2/s, P = 8×10-9m2/s. This particular form of VERDICT resulted from 

preliminary work on model selection, similar to (28, 32, 33), to identify a 

parsimonious model with the minimum number of parameters required to fit the data 

robustly. 

Histopathology 

For each patient after the prostate biopsy procedure the tissue samples were collected 

and placed in a paraffin block.  After paraffin embedding, microsections were placed 

on glass slides and stained with hematoxylin and eosin (H&E). Also 

immunohistochemical staining was performed for blood vessels and capillaries using 

the CD31 (PECAM-1, Leica Biosystems, Newcastle-upon-Tyne, UK) marker as per 
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standard methods. The cores were approximately 4µm thick and 1cm in length. Each 

lesion was measured in size and assigned a Gleason score by a histopathologist with 

10 years experience in genitourinary pathology.  A second histopathologist with 10 

years of experience verified the Gleason score findings. The histopathologist also 

evaluated	
  the	
  cellularity	
  and	
  vascularity	
  of	
  the	
  samples. To quantify the prostate 

tissue components we performed manual segmentation of the core biopsies. For this 

histopathological analysis we considered all cancers (irrespective of Gleason grade) 

versus benign tissue.  

 

Statistical Analysis 

Each	
  parameter	
  of	
  each	
  model	
  was	
  evaluated	
  for	
  performance	
  in	
  differentiation 

between benign and cancerous tissue via a Wilcoxon matched pairs statistics. To 

perform statistical analysis we used the OriginPro 9.1 statistics software for Windows. 

We used nonparametric tests to assess differences between the paired malignant 

versus normal appearing PZ values. A P < 0.05 was taken to indicate significance in 

all methods. 

 

Results 

 

The 8 patients had histologically confirmed Gleason scores of 3+3 [n=1], 3+4 [n=6], 

4+3 [n=1] cancer in the PZ based on targeted biopsy cores. Patients with 3+3 score 

had cancer core length (CCL) of 3mm, with 3+4 had median CCL 7.5mm [range 5 to 

14mm] and with 4+3 had CCL 1mm. A summary of characteristics for the 8 patients 

is presented in Table 2. Histological analysis of the patient biopsies revealed 

prominent neovascularisation in cancer regions (one example shown in Figure 3A, B) 
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(vessels stain brown and are indicated with arrows) and found increased number of 

epithelial cells with evident reduction of the supporting stroma. To quantify the 

prostate tissue components we performed manual segmentation of the core biopsies 

labelling areas of blood vessels, lumen, epithelium and stroma. Figure 3C quantifies 

the increase in vasculature in tumour regions (162%) compared to benign. Figure 3D 

presents ratios for lumen, epithelial cells and stroma. The cancer shows increased 

proportions of lumen space (44%) and epithelium (470%), and reduction of stroma (-

62%).  

Figure 4 presents the fit of the VERDICT, ADC, IVIM and Kurtosis models to the 

data from a representative patient (63y, Gleason score 3+4), with the corresponding 

mean squared errors (MSE), by comparing the measured and predicted normalised 

diffusion signal S as a function of the diffusion weighting factor (b value). The 

VERDICT model captures the trends in the data for both benign and cancer ROIs 

with lower MSE than the ADC and IVIM models. The standard ADC and IVIM 

models exhibit clear departures: the ADC model signal prediction starts too high and 

ends up too low demonstrating that the signal decay is not monoexponential. The 

IVIM fails to estimate the signal at high b values in the cancer ROI, indicating that 

both models are unable to capture all the variation in the signal from both the cancer 

and benign tissue regions. The Kurtosis model fits both benign and cancer signals 

closely over their whole range in a similar way to VERDICT. Figure 5 compares 

more closely, over all patients, the VERDICT and Kurtosis models’ ability to explain 

the data averaged over the benign and cancer regions using Akaike’s Information 

Criterion (AIC) (34). AIC allows model comparison that accounts for differences in 

complexity (Kurtosis has 2 free parameters, while VERDICT has 3); the preferred 

model is the one with the minimum AIC score. In benign regions, the two models 
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have similar residual error score, so the AIC has a slight but consistent preference for 

the Kurtosis model, because of its simplicity. However, in cancer areas VERDICT 

shows consistent and often substantially smaller AIC than the Kurtosis model, 

indicating that the extra complexity of the model is needed to explain the data.  

Figure 6 compares parameter estimates from the ADC, IVIM, and VERDICT models 

from all patients fit to signals averaged over the benign and cancer ROIs. The d, Dk, K 

estimates are all significantly different (P =0.05) between tissue types with d, Dk 

lower and K higher in cancer than normal appearing tissue. None of the IVIM 

parameter estimates show significant differences between the tissue types (P =0.11 to 

0.29). The VERDICT volume fraction estimates for the IC, EES and vascular 

compartments are all significantly different between the benign and cancer tissue (P 

=0.05); note, however, that the three volume fractions are interdependent as they are 

constrained to sum to one. The IC and vascular volume fractions are higher while the 

EES fraction is lower in tumour than benign regions. There is no significant change in 

the cell radius estimate.  

Figure 7 illustrates parametric maps for an example patient (62y) with Gleason score 

3+4 tumour on the PZ for the ADC, Kurtosis and VERDICT models. These models 

showed significant differences in the averaged data over the ROIs of cancer versus 

benign tissue. The ADC map displays lower values for the tumour area as well as the 

Kurtosis Dk map. The Kurtosis K is higher for the tumour region as in the whole ROI 

analysis. Spatial mapping reveals clear differences in VERDICT parameters between 

the benign and cancer areas, particularly in the IC volume fraction, the EES volume 

fraction, and the radius index. The differences in those parameters between cancer 

and benign areas are broadly consistent with the whole-ROI VERDICT analysis. The 

cellularity map is an estimate of cell density obtained by dividing the intracellular 
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volume fraction estimate by the cube of the cell-radius (cell volume) estimate. It 

strongly highlights the tumour area by suppressing high values elsewhere in the 

prostate that other parameter maps show, unlike the ADC and Kurtosis maps. The 

microstructural maps also show heterogeneity within the tumour region, which may 

provide additional useful diagnostic information.  

Figure 8 investigates the relationship between the VERDICT and the ADC and 

Kurtosis parameters. It presents scatter plots for the tumour region of all the patients 

for voxel by voxel fitted values of d, Dk, K and fIC, R, fEES, fVASC. The colour coding 

distinguishes individual patients. We observe similar correlative trends for d and Dk: 

strong negative correlation with fIC, and moderate positive correlations with fEES and 

fVASC. The kurtosis K shows strong positive correlation with fIC and moderate negative 

correlation with fEES.  

Discussion  

Biomarkers sensitive to the pathophysiology of tumours are essential in the clinic for 

diagnosis and risk stratification (based on cancer grade and volume). Most current 

biomarkers come from histology, but the procedure is invasive, often challenging to 

perform, and limited to small sampling areas so are prone to errors. ADC derived 

from DW-MRI is increasingly used in cancer imaging to aid diagnosis, but is limited 

by the lack of specificity to individual histological features. The incorporation of an 

appropriate mathematical model is necessary to address this weakness and to develop 

DW-MRI as a source of non-invasive biomarkers of tumour histopathology, thereby 

improving patient classification, and perhaps ultimately limiting the requirement for 

biopsy. Previous studies using DW-MRI in prostate cancer have also assessed IVIM 

and Kurtosis techniques, however these models also lack specificity to the underlying 
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microstructure with significant overlap of parameter values between benign and 

cancerous tissue (11, 19, 21). VERDICT has the potential to overcome limitations of 

these simple models as it provides an effective probe of specific microstructural 

changes.  

In the present study we examined patients with biopsy proven prostate PZ cancer 

using VERDICT MRI.  Lesion-to-lesion comparisons with the patients’ tissue 

samples (Figure 3A-D) demonstrate how the volume fractions of different prostate 

tissue components vary over cancer and benign tissue. The main trends are a 

substantial increase in the proportion of epithelial tissue with prostate cancer while 

the volume of supporting stroma reduces.  This suggests that the high values of the 

VERDICT intracellular volume fraction and cellularity reflect the proliferation of 

epithelial cells in tumours, which contain densely packed cells with little extracellular 

space.  Also, the vascular staining in tumour areas showed the appearance of many 

new small blood vessels in close proximity to the tumour (neovascularisation). In 

contrast, areas of benign tissue had fewer large pre-existing vessels. These 

observations agree with the significant increase of the VERDICT vascular volume 

fraction and support the assignment of the prostate tissue compartments to the 

VERDICT model components illustrated in Figure 1. The observed VERDICT trends 

of increased cellularity and vasculature in cancerous versus normal prostate tissue are 

also well known and documented in the literature (13, 35).  

We found the VERDICT volume fraction estimates of the IC and vascular tissue 

components significantly higher for cancer than benign tissue (Wilcoxon test P=0.05). 

These results are in agreement with histological assessment of increased cellularity 

and vascularity within our patient cohort and with existing knowledge of prostate 
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cancer (13, 35).  Also the EES volume fraction was significantly lower for the tumour 

ROI than the benign region.  This reflects the sensitivity of the volume fraction 

parameters of VERDICT to discern microstructure previously seen in a preclinical 

study, where all of the volume fraction parameters showed significant differences 

between two tumour xenograft models of colorectal cancer with different cellular and 

vascular phenotypes (23). The	
  parameter	
  estimations	
  in	
  the	
  current	
  study	
  were	
  

based	
  on	
  regions	
  known	
  to	
  be	
  cancerous	
  or	
  benign.	
  To	
  evaluate	
  the	
  ability	
  of	
  

VERDICT	
  to	
  detect	
  cancerous	
  tissue,	
  a	
  more	
  extensive	
  blinded	
  study	
  is	
  required. 

From the standard models d, Dk and K parameters were also significantly different (P 

=0.05) between tissue types, but none of the IVIM parameters (P =0.11to 0.29).  

Likewise both the IVIM and the ADC models were unable to describe the full range 

of the signal from the prostate data as shown in Figure 4, in contrast with VERDICT 

and the Kurtosis models.  Recent findings in Jambor et al (36), also concluded that the 

kurtosis model is better than the biexponential model for both normal and cancerous 

prostate tissue, but did not evaluate the VERDICT model. They found that the 

biexponential model fitted the data best, but with poor reproducibility, and hence, 

they preferred the kurtosis model overall. In our study we found that the kurtosis and 

VERDICT fitted the data more closely than the biexponential IVIM. As	
  commonly	
  

used	
  in	
  the	
  literature,	
  we	
  used	
  unconstrained	
  fits	
  for	
  the	
  IVIM	
  model	
  and	
  a	
  wide	
  

range	
  of	
  b	
  values.	
  However,	
  in	
  comparing	
  with	
  VERDICT,	
  the	
  choice	
  of	
  b	
  values	
  

may	
  not	
  have	
  been	
  optimal	
  for	
  IVIM	
  parameter	
  estimation. The differences in the 

fit of the biexponential model are most likely due to the different set of b values in the 

acquisition protocol. The biexponential model has also been shown elsewhere in 

literature to have a variable performance (20, 23, 37).    

The parametric maps from voxel by voxel fitting in Figure 7 reflect the trends seen in 
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the whole-ROI fitting in Figure 4. They showed elevated values of IC volume fraction 

in the tumour area and reduction of EES volume fraction. Furthermore combining the 

volume fraction of the IC component with the cell radius index allowed us to 

compose a cellularity map that clearly indicated only the tumour area as highly 

cellular and not other benign regions highlighted in the ADC d, and the kurtosis Dk, K 

parametric maps. The cellularity feature of the VERDICT model may have potential 

for improving the diagnostic procedure by eliminating deceptive false positives.  

Although both the ADC and Kurtosis models also revealed significant differences 

between the benign and tumour areas, a key advantage of VERDICT is that it assigns 

the differences to specific biophysical or histological factors. Comparison of ADC 

and Kurtosis parameters with VERDICT parameters provides some insight into the 

biophysical properties that affect the unspecific parameters, which may help interpret 

other studies that focus on ADC or Kurtosis parameters (5, 9, 36, 38). The scatter 

plots in Figure 8 showed strong negative correlation of the IC volume fraction with 

ADC d and Dk as well as moderate positive correlations with the EES and vascular 

volume fractions. These observations make sense, as we would expect ADC to 

decrease as the proportion of water trapped in cells increases and to increase as the 

proportion of water moving more rapidly in the vascular network increases. The 

kurtosis K exhibited opposite trends having positive correlation with the IC volume 

fraction and moderate negative correlation with the EES volume fraction. This again 

makes sense, as we would expect greater departures from Gaussian dispersion as the 

proportion of water restricted within cells increases. Although more data is necessary 

to establish better the relationship between the different parameters, the results do 

suggest that ADC and kurtosis confound various interesting histological effects, 

which further motivates the use of VERDICT parameters instead.  
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This study is an essential first step in the translation of the VERDICT technique to 

clinical practice. We have purposefully used an extended imaging protocol (compared 

to standard clinical imaging protocols) to obtain a uniquely rich data set with which to 

establish the best form for the VERDICT model and demonstrate its potential 

advantages. This limited the cohort size to 8 patients, which supports a comparison 

only of cancerous tissue against benign rather than a finer grained study of the 

contrast between different Gleason grades. Larger patient populations, with a wide 

range of tumour grades, are needed to evaluate the diagnostic benefit of VERDICT 

prior to clinical adoption. The results we present here are sufficiently compelling to 

motivate such a study.  Nonetheless, it requires a shorter acquisition protocol of 

approximately 10-15 minutes that is more feasible within the standard clinical 

workflow allowing it to supplement multi-parametric MRI examination. Thus the next 

step is to design a clinical acquisition protocol using, for example, the experiment 

design optimization in (39). Such optimization reduces scan time by producing the 

minimum optimal combination of b values for estimating the VERDICT parameters. 

The form of the model we have identified here with the rich data set is essential to 

underpin that process and the positive results motivate continuation to the next steps.  

Also the small cohort of our study consisted only of pristine patients.  Patients who 

have already undergone biopsies could potentially be analysed using VERDICT. 

Although previous studies have shown that diffusion MRI tends to be quite robust to 

the changes caused by biopsy, for example in active surveillance patients (40), it is 

possible that the new model may be more sensitive than standard DWI to the 

associated tissue disruption. Further work is required to investigate non-pristine 

patients. 
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In the future, the VERDICT model can be refined in a number of ways to incorporate 

more physiological parameters. However, as discussed in Panagiotaki et al (23), we 

believe that the current form of the model is as complex as the PGSE sequence on 

current clinical MRI scanners can support.  A range of other DW measurements could 

potentially allow incorporation of additional microstructural parameters in the model.  

For example, oscillating gradient DW-MRI could give access to subcellular structures 

such as the nuclei (38, 41, 42), while double pulsed-field gradient waveform 

sequences could inform about the shape (43) and permeability of cells (44). 

 

Conclusion 

In summary, we have demonstrated the utility of the VERDICT framework in a 

clinical setting for imaging prostate cancer. VERDICT successfully differentiated 

between benign and cancer regions while providing useful microstructural parameter 

estimates such as cell size, cellular, vascular and EES volume fractions. ADC d, Dk 

and K were also significantly different between types, unlike the IVIM parameters. 

The specificity of VERDICT analysis sheds light on the factors that affect and control 

the contrast in currently used methods such as ADC and DKI that have less direct 

biophysical foundation. Furthermore, the direct microstructural inferences could 

improve diagnosis and patient risk stratification, and help reduce the large number of 

false positive and false negative biopsies that currently arise from the Prostate 

Specific Antigen followed by the transrectal biopsy diagnostic pathway. Specifically, 

a promising advantage of this approach over simple ADC and DKI is the potential to 

eliminate the need for DCE-MRI, which is particularly pertinent to patients who 

cannot receive intravenous gadolinium-based contrast media. Most importantly, this 

feasibility study is a first step motivating the formation of a clinically viable imaging 
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protocol. This will allow large-scale evaluation of this technique to potentially offer 

and establish new non-invasive biomarkers for cancer diagnosis. 
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Tables  

 

Table 1 DW- MRI acquisition parameters, where DELTA is the time separation 

between the two pulses, delta is the duration of the pulses and |G| is the gradient 

strength. 

b value 

s/mm2 

DELTA/ delta 

ms 

TE ms TR 

ms 

|G| T/m 

 1000 26.6 / 8.5 55 2000 0.090181 

2000 29.4 / 11.3 60 2305 0.092374 

3000 31.6 / 13.5 65 2731 0.0921 

2500 30.7 / 12.6 63 2517 0.091095 

1500 28.1 / 10.0 58 2033 0.091966 

800 25.7 / 7.6 53 2000 0.091373 

400 23.7 / 5.6 49 2000 0.090323 

200 22.2 / 4.1 46 2000 0.089303 

100 21.2 / 3.1 44 2000 0.084886 
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Table 2 Characteristics of the 8 patients with confirmed prostate cancer 

 Mean Range 

Age (years)  65 55-82 

Prostate-specific antigen 

level (ng/ml) 

7.025 2-14.5 

Pathologic stage 

T2 5 

T3a 3 

Gleason Score 

3+3 1 

3+4 6 

4+3 1 

 

Figure Legends 

 

Figure 1 Schematic representation of the prostate tissue and the corresponding 

VERDICT model. The colour indicates the potential assignment of the tissue 

compartments to the model components (see Discussion). 

Figure 2 Gleason score 3+4 tumour on the PZ of a 74-year-old patient is seen as a 

focus of high signal intensity on a DW image of b value=3000s/mm2 (A). The tumour 

area is noted in magenta and the benign region in green. In (B) the tumour is seen as a 

homogenous focus of low signal intensity on the closest corresponding transverse T2-

weighted MR image. 
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Figure 3 Histological analysis and prostate tissue component ratios from manual 

segmentation of biopsy cores. A) Immunohistochemical detection of vasculature in 

benign tissue shows a small number of large blood vessels. B) In cancerous tissue 

staining reveals numerous new small capillaries near the glands. Blood vessels are 

outlined in brown and presented by arrows. Note the evident proliferation of epithelial 

cells and loss of surrounding stroma in cancer. Manual segmentation ratios of 

VERDICT patients’ biopsies for C) vasculature, D) lumen, epithelial cells and stroma.  

Figure 4 Fits of the VERDICT, ADC, IVIM and Kurtosis models to the data for an 

example data set of a 63-year-old patient with Gleason score 3+4. The symbols 

represent the measured data and the lines show the corresponding fits by the model. 

The normalized signal S is plotted as a function of the b value for all diffusion 

directions. The VERDICT and Kurtosis models provide a good fit, whilst the ADC 

and IVIM models fail to represent the whole range of the data. 

Figure 5 AIC scatter plots for the VERDICT and the kurtosis model with data from 

all the patients for signal averaged over the benign and cancer regions. Lower AIC 

scores indicate the best model. VERDICT consistently scores lower AIC for all 

cancer regions, while for benign areas the kurtosis model performs best.	
  

Figure 6 Parameter estimates for all patients for the benign and cancer ROIs for (A) 

ADC, (B) IVIM, (C) VERDICT and (D) Kurtosis. Boxes define the interquartile 

range, whiskers the full range, the central lines the median and the dot the mean. 

Significant differences between groups are represented by asterisks (Wilcoxon test 

P<0.05). VERDICT volume fractions of the IC, EES and vascular compartments, and 

the ADC and Kurtosis parameters showed significant differences between the groups 
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of benign and cancer tissue. 

Figure 7 Parameter maps from 62-year-old patient with Gleason score 3+4 tumour on 

the PZ. In red we outline the tumour ROI and in black a benign region. A) Transverse 

T2 weighted image, B) ADC map, C) volume fraction map of the intracellular 

component, D) volume fraction map of the extracellular-extravascular space (EES), 

E) cell radius index map F) cellularity map derived from fIC and R, G) volume fraction 

map of the vascular space, H) kurtosis diffusivity map, I) kurtosis map.  The 

cellularity map clearly distinguishes the tumour from the benign region unlike the rest 

parametric maps. 

Figure 8 Colour-coded per patient scatter plots of voxel by voxel fitting values of the 

ADC d, Dk, K and fIC, R, fEES, fVASC, for the tumour ROIs showing the least-squares 

line and the correlation coefficients for each plot.  For the ADC d and Dk we observe 

strong negative correlation with fIC, and moderate positive correlations with fEES and 

fVASC. The kurtosis K shows strong positive correlation with fIC and moderate negative 

correlation with fEES. 
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