82 research outputs found

    The bounce of the body in hopping, running and trotting: different machines with the same motor

    Get PDF
    The bouncing mechanism of human running is characterized by a shorter duration of the brake after ‘landing’ compared with a longer duration of the push before ‘takeoff’. This landing–takeoff asymmetry has been thought to be a consequence of the force–velocity relation of the muscle, resulting in a greater force exerted during stretching after landing and a lower force developed during shortening before takeoff. However, the asymmetric lever system of the human foot during stance may also be the cause. Here, we measure the landing–takeoff asymmetry in bouncing steps of running, hopping and trotting animals using diverse lever systems. We find that the duration of the push exceeds that of the brake in all the animals, indicating that the different lever systems comply with the basic property of muscle to resist stretching with a force greater than that developed during shortening. In addition, results show both the landing–takeoff asymmetry and the mass-specific vertical stiffness to be greater in small animals than in large animals. We suggest that the landing–takeoff asymmetry is an index of a lack of elasticity, which increases with increasing the role of muscle relative to that of tendon within muscle–tendon units

    Sensitivity of Species Habitat-Relationship Model Performance to Factors of Scale

    Get PDF
    Researchers have come to different conclusions about the usefulness of habitat-relationship models for predicting species presence or absence. This difference frequently stems from a failure to recognize the effects of spatial scales at which the models are applied. We examined the effects of model complexity, spatial data resolution, and scale of application on the performance of bird habitat relationship (BHR) models on the Craig Mountain Wildlife Management Area and on the Idaho portion of the U.S. Forest Service\u27s Northern Region. We constructed and tested BHR models for 60 bird species detected on the study areas. The models varied by three levels of complexity (amount of habitat information) and three spatial data resolutions (0.09 ha, 4 ha, 10 ha). We tested these models at two levels of analysis: the site level (a homogeneous area \u3c0.5 ha) and cover-type level (an aggregation of many similar sites of a similar land-cover type), using correspondence between model predictions and species detections to calculate kappa coefficients of agreement. Model performance initially increased as models became more complex until a point was reached where omission errors increased at a rate greater than the rate at which commission errors were decreasing. Heterogeneity of the study areas appeared to influence the effect of model complexity. Changes in model complexity resulted in a greater decrease in commission error than increase in omission error. The effect of spatial data resolution on the performance of BHR models was influenced by the variability of the study area. BHR models performed better at cover-type levels of analysis than at the site level for both study areas. Correct-presence estimates (1 − minus percentage omission error) decreased slightly as number of species detections increased on each study area. Correct-absence estimates (1 − percentage commission error) increased as number of species detections increased on each study area. This suggests that a large number of detections may be necessary to achieve reliable estimates of model accuracy

    Two explanations for the compliant running paradox: reduced work of bouncing viscera and increased stability in uneven terrain

    Get PDF
    Economy is a central principle for understanding animal locomotion. Yet, compared with theoretical predictions concerning economy, animals run with compliant legs that are energetically costly. Here, we address this apparent paradox, highlighting two factors that predict benefits for compliant gaits: (i) minimizing cost of work associated with bouncing viscera; and (ii) leg control for robust stability in uneven terrain. We show that consideration of the effects of bouncing viscera predicts an energetic optimum for relatively compliant legs. To compare stability in uneven terrain, we introduce the normalized maximum drop (NMD), a measure based on simple kinematics, which predicts that compliant legs allow negotiation of relatively larger terrain perturbations without failure. Our model also suggests an inherent trade-off in control of leg retraction velocity (ω) for stability: low ω allows higher NMD, reducing fall risk, whereas high ω minimizes peak forces with terrain drops, reducing injury risk. Optimization for one of these factors explicitly limits the other; however, compliant legs relax this trade-off, allowing greater stability by both measures. Our models suggest compromises in leg control for economy and stability that might explain why animals run with compliant legs

    The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)

    Get PDF
    The observation of neutrinoless double-beta decay (0ÎœÎČÎČ{\nu}{\beta}{\beta}) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ∌\sim0.1 count /(FWHM⋅\cdott⋅\cdotyr) in the region of the signal. The current generation 76^{76}Ge experiments GERDA and the MAJORANA DEMONSTRATOR utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0ÎœÎČÎČ{\nu}{\beta}{\beta} signal region of all 0ÎœÎČÎČ{\nu}{\beta}{\beta} experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76^{76}Ge experiment. The collaboration aims to develop a phased 0ÎœÎČÎČ{\nu}{\beta}{\beta} experimental program with discovery potential at a half-life approaching or at 102810^{28} years, using existing resources as appropriate to expedite physics results.Comment: Proceedings of the MEDEX'17 meeting (Prague, May 29 - June 2, 2017

    A New Direction to Athletic Performance: Understanding the Acute and Longitudinal Responses to Backward Running

    Get PDF
    Backward running (BR) is a form of locomotion that occurs in short bursts during many overground field and court sports. It has also traditionally been used in clinical settings as a method to rehabilitate lower body injuries. Comparisons between BR and forward running (FR) have led to the discovery that both may be generated by the same neural circuitry. Comparisons of the acute responses to FR reveal that BR is characterised by a smaller ratio of braking to propulsive forces, increased step frequency, decreased step length, increased muscle activity and reliance on isometric and concentric muscle actions. These biomechanical differences have been critical in informing recent scientific explorations which have discovered that BR can be used as a method for reducing injury and improving a variety of physical attributes deemed advantageous to sports performance. This includes improved lower body strength and power, decreased injury prevalence and improvements in change of direction performance following BR training. The current findings from research help improve our understanding of BR biomechanics and provide evidence which supports BR as a useful method to improve athlete performance. However, further acute and longitudinal research is needed to better understand the utility of BR in athletic performance programs

    The influence of speed and size on avian terrestrial locomotor biomechanics: predicting locomotion in extinct theropod dinosaurs

    Get PDF
    How extinct, non-avian theropod dinosaurs moved is a subject of considerable interest and controversy. A better understanding of non-avian theropod locomotion can be achieved by better understanding terrestrial locomotor biomechanics in their modern descendants, birds. Despite much research on the subject, avian terrestrial locomotion remains little explored in regards to how kinematic and kinetic factors vary together with speed and body size. Here, terrestrial locomotion was investigated in twelve species of ground-dwelling bird, spanning a 1,780-fold range in body mass, across almost their entire speed range. Particular attention was devoted to the ground reaction force (GRF), the force that the feet exert upon the ground. Comparable data for the only other extant obligate, striding biped, humans, were also collected and studied. In birds, all kinematic and kinetic parameters examined changed continuously with increasing speed, while in humans all but one of those same parameters changed abruptly at the walk-run transition. This result supports previous studies that show birds to have a highly continuous locomotor repertoire compared to humans, where discrete ‘walking’ and ‘running’ gaits are not easily distinguished based on kinematic patterns alone. The influences of speed and body size on kinematic and kinetic factors in birds are developed into a set of predictive relationships that may be applied to extinct, non-avian theropods. The resulting predictive model is able to explain 79–93% of the observed variation in kinematics and 69–83% of the observed variation in GRFs, and also performs well in extrapolation tests. However, this study also found that the location of the whole-body centre of mass may exert an important influence on the nature of the GRF, and hence some caution is warranted, in lieu of further investigation

    The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)

    Get PDF
    • 

    corecore