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SENSITIVITY OF SPECIES HABITAT-RELATIONSHIP MODEL
PERFORMANCE TO FACTORS OF SCALE

J. W. Karr,'$ P. J. HEGLUND,2” E. O. GARTON,? J. M. ScorT,* N. M. WRIGHT,!8 AND R. L. HuTTO®

Yldaho Fish and Wildlife Cooperative Research Unit, University of Idaho, Moscow, Idaho 83844-1141 USA

2Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844-3051 USA
3Department of Fish and Wildlife, University of Idaho, Moscow, Idaho 83844-1136 USA
“Biological Resources Division/USGS, Idaho Fish and Wildlife Cooperative Research Unit,
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Abstract. Researchers have come to different conclusions about the usefulness of hab-
itat-relationship models for predicting species presence or absence. This difference fre-
quently stems from a failure to recognize the effects of spatial scales at which the models
are applied. We examined the effects of model complexity, spatial data resolution, and scale
of application on the performance of bird habitat relationship (BHR) models on the Craig
Mountain Wildlife Management Area and on the Idaho portion of the U.S. Forest Service’s
Northern Region. We constructed and tested BHR models for 60 bird species detected on
the study areas. The models varied by three levels of complexity (amount of habitat in-
formation) and three spatial data resolutions (0.09 ha, 4 ha, 10 ha). We tested these models
at two levels of analysis: the site level (a homogeneous area <0.5 ha) and cover-type level
(an aggregation of many similar sites of a similar land-cover type), using correspondence
between model predictions and species detections to calculate kappa coefficients of agree-
ment. Model performance initially increased as models became more complex until a point
was reached where omission errors increased at a rate greater than the rate at which com-
mission errors were decreasing. Heterogeneity of the study areas appeared to influence the
effect of model complexity. Changes in model complexity resulted in a greater decrease
in commission error than increase in omission error. The effect of spatial data resolution
on the performance of BHR models was influenced by the variability of the study area.
BHR models performed better at cover-type levels of analysis than at the site level for both
study areas. Correct-presence estimates (1 — minus percentage omission error) decreased
slightly as number of species detections increased on each study area. Correct-absence
estimates (1 — percentage commission error) increased as number of species detections
increased on each study area. This suggests that a large number of detections may be

necessary to achieve reliable estimates of model accuracy.

Key words: avian habitat; bird counts; GIS; Idaho; species habitat-relationship models.

Researchers have come to different conclusions
about the validity and usefulness of habitat-relationship
models (see Short and Hestbeck 1995, Davis 1996,
Edwards 1996, Scott et al. 1996). Scott et al. (1993)
and Edwards et al. (1996) reported high levels of per-
formance from Gap Analysis wildlife habitat-relation-
ship models in Idaho and Utah, respectively, when ap-
plied to managed areas generally >10 000 ha. However,
Dedon et al. (1986) and Block et al. (1994) reported
California habitat-relationship model performance low
enough to question its use as a management tool. The
key difference between these studies was the scale of
analysis used by the researchers.
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Block et al. (1994) found moderate error rates when
investigating the ability of habitat-relationship models
to predict species occurrence between study areas rang-
ing from 1700 to 8000 ha in size. However, when they
compared the ability of habitat-relationship models to
predict species occurrence between major cover types
within their study areas, their error rates rose. This has
led some researchers to conclude that habitat-relation-
ship models were only appropriate for regional, coarse-
scale analyses (Block et al. 1994, Short and Hestbeck
1995).

The performance of a habitat-relationship model
should be related to the scale of analysis. Csuti (1996)
stated that the accuracy of model predictions generally
improved at coarse map scales because very large areas
were considered. Hollander et al. (1994) matched dif-
ferent data resolutions and sources of habitat infor-
mation to create the most accurate models for different
scales. Stoms (1992) reported that model predictions
were sensitive to the resolution of the habitat data used.
Additionally, assessment of model performance must
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be conducted with an analysis unit that matches the
target application of the model (Krohn 1996, Boone
and Krohn 1999).

Csuti (1996:135) stated that ‘‘information used to
create maps of animal distributional areas remains the
same across the range of map scales.”” However, if this
were the case, we would expect a properly constructed
habitat-relationship model to perform at the same level
across all scales. But, because species respond to eco-
logical processes operating simultaneously over a wide
range of scales, different factors may limit species dis-
tributions at different scales (Wiens 1989). Thus the
wide range of reported values for the performance of
habitat-relationship models at different scales suggests
that information needs for accurately predicting suit-
able habitat for a species differ with level of application
(Hollander et al. 1994).

These information needs involve matching appro-
priate sources of habitat information with the best spa-
tial data resolution and an appropriate analysis unit for
the management or research question being asked.
Questions about the distribution of a species across its
range or the best location for new conservation reserves
are coarse-scale modeling applications. These ques-
tions require different habitat and spatial data than fine-
scale questions. Landscape-scale questions, for which
modeling would be useful, might regard the effect of
management actions on vertebrate populations within
a managed area or development of a sampling scheme
for avian nest searches.

However, due to time and budget constraints, it is
not always possible to create separate habitat-relation-
ship models for each scale of application. Some pro-
grams (e.g., Gap Analysis) attempt to use a multiple-
scale approach to modeling species habitats where a
biogeographic range is first modeled and used as the
modeling extent for regional habitat modeling (Scott
et al. 1993, Butterfield et al. 1994, Csuti 1996). Re-
source managers and land use planners have shown
considerable interest in applying widely available re-
gional habitat-relationship models (e.g., Gap Analysis
models) to local situations for which the models were
not designed (e.g., Wright 1997).

We lack knowledge of how the extent of habitat in-
formation, resolution of input spatial data, and the level
of analysis interact to affect the performance of habitat-
relationship models at different spatial and temporal
scales and the validity of using the models at these
scales. Our objectives were to construct a series of bird
habitat-relationship (BHR) models for a set of northern
- Idaho birds and use them to determine how accuracy
of the models changes at different spatial levels of anal-
ysis, with different resolutions of geographic infor-
mation system (GIS) input data, and with different lev-
els of model complexity. We considered this objective
for the Craig Mountain Wildlife Management Area,
Idaho (Craig Mountain) and the Idaho portion of North-
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Region 1

Craig Mountain

s

Fi1G. 1. The Craig Mountain and Region 1 study areas in
northern Idaho.

A ]

ern Rocky Mountain Region (Region 1, U.S. Forest
Service).

STUDY AREAS

The Craig Mountain area extends from ~40 km south
of Lewiston, Idaho southward to the confluence of the
Salmon River and the Snake River (Fig. 1). The total
Craig Mountain area comprises ~60 000 ha. The ma-
jority of this land consists of the Craig Mountain Wild-
life Management Area, administered by the Idaho De-
partment of Fish and Game. The Bureau of Land Man-
agement, the Nature Conservancy, Idaho Department
of Lands, and the Nez Perce Tribe also own significant
parcels of land and actively engage in management
practices on the Craig Mountain area. The vegetation
of Craig Mountain varies widely with elevation and
aspect from native and exotic grasslands and riparian
areas at low elevations to ponderosa pine (Pinus pon-
derosa), Douglas-fir (Pseudotsuga menziezii), grand fir
(Abies grandis), and lodgepole pine (Pinus contorta)
at higher elevations.

The second area, Region 1, is comprised mostly of
the Idaho portion of U.S. Forest Service Northern Re-
gion (the Idaho Panhandle, Clearwater, Saint Joe, and
Nez Perce National Forests) as well as land owned by
the Potlatch Corporation (Fig. 1). This area (2.75 X
10¢ ha) begins just north of the Clearwater River, ex-
tending northward to the tip of the Idaho panhandle,
but excluding the dry grasslands of the Snake River
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TABLE 1. Common and scientific names, and number of detections for bird species detected in either Craig Mountain or
Region 1, northern Idaho.

Craig
Common name Scientific name Region 1 Mountain

Mallard Anas platyrhynchos 2

Northern Pintail Anas acuta 1
Common Merganser Mergus merganser 2

Sharp-shinned Hawk Accipiter striatus 2 2
Cooper’s Hawk Accipiter cooperii 2
Northern Goshawk Accipiter gentilis 4

Red-tailed Hawk Buteo jamaicensis .5 4
American Kestrel Falco sparverius 5 14
Gray Partridge Perdix perdix 3
Chukar Alectoris chukar 5
Spruce Grouse Falcipennis canadensis 1

Blue Grouse Dendragapus obscurus 2 4
Ruffed Grouse Bonasa umbellus 66 22
Wild Turkey Meleagris gallopavo 1 5
California Quail Callipepla californica 4
Mountain Quail Oreortyx pictus 1

Spotted Sandpiper Actitis macularia 2 3
Common Snipe Gallinago gallinago 3 5
Mourning Dove Zenaida macroura 2 3
Common Barn Owl Tyto alba 1
Great Gray Owl Strix nebulosa 1
Common Nighthawk Chordeiles niger 1
Vaux’s Swift Chaetura vauxi 7
Calliope Hummingbird Stellula calliope 12 5
Broad-tailed Hummingbird Selasphorus platycercus 2. 3
Rufous Hummingbird Selasphorus rufus 41 18
Belted Kingfisher Ceryle alcyon 5 3
Lewis” Woodpecker Melanerpes lewis 1

Williamson’s Sapsucker Sphyrapicus thyroideus 7 8
Red-naped Sapsucker Sphyrapicus nuchalis 70 24
Downy Woodpecker Picoides pubescens 2 14
Hairy Woodpecker Picoides villosus 49 20
Three-toed Woodpecker Picoides tridactylus 3

Black-backed Woodpecker Picoides arcticus 2

Northern Flicker Colaptes auratus 56 67
Pileated Woodpecker Dryocopus pileatus 34 10
Olive-sided Flycatcher Contopus borealis 42 14
Western Wood-pewee Contopus sordidulus 4 27
Willow Flycatcher Empidonax traillii 19 4
Hammond’s Flycatcher Empidonax hammondii 239 32
Dusky Flycatcher Empidonax oberholseri 174 115
Cordilleran Flycatcher Empidonax occidentalis 22 27
Say’s Phoebe Sayornis saya 1
Western Kingbird Tyrannus verticalis 13
Eastern Kingbird Tyrannus tyrannus 2
Horned Lark Eremophila alpestris 6
Violet-green Swallow Tachycineta thalassina 18
Northern Rough-winged Swallow Stelgidopteryx serripennis 1
Cliff Swallow Petrochelidon pyrrhonota 8
Barn Swallow Hirundo rustica 1 2
Gray Jay Perisoreus canadensis 61 21
Steller’s Jay Cyanocitta stelleri 56 25
Clark’s Nutcracker Nucifraga columbiana 3 3
Black-billed Magpie Pica pica 6
American Crow Corvus brachyrhynchos 19
Common Raven Corvus corax 9 9
.Black-capped Chickadee Parus atricapillus 143 77
Mountain Chickadee Poecile gambeli 150 130
Boreal Chickadee Poecile hudsonicus 4

Chestnut-backed Chickadee Poecile rufescens 222 7
Red-breasted Nuthatch Sitta canadensis 559 120
White-breasted Nuthatch Sitta carolinensis 22 13
Pygmy Nuthatch Sitta pygmaea 4

Brown Creeper Certhia americana 71 25
Rock Wren Salpinctes obsoletus 1 34
Canyon Wren Catherpes mexicanus 2 18
House Wren - Troglodytes aedon 23 48
Winter Wren Troglodytes troglodytes 302 11
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Craig
Common name Scientific name Region 1 Mountain

American Dipper Cinclus mexicanus 13
Golden-crowned Kinglet Regulus satrapa 678 88
Ruby-crowned Kinglet Regulus calendula 118 90
Western Bluebird Sialia mexicana 9
Mountain Bluebird Sialia currucoides 6 7
Townsend’s Solitaire Mpyadestes townsendii 56 7
Veery Catharus fuscescens 23
Swainson’s Thrush Catharus ustulatus 470 37
Hermit Thrush Catharus gurtatus 49 37
American Robin Turdus migratorius 266 226
Varied Thrush Ixoreus naevius 192 7
Gray Catbird Dumetella carolinensis 4

Cedar Waxwing Bombycilla cedrorum 42 37
European Starling Sturnus vulgaris 1 5
Solitary Vireo Vireo solitarius 183 94
Warbling Vireo Vireo gilvus 263 83
Red-eyed Vireo Vireo olivaceus 11 38
Orange-crowned Warbler Vermivora celata 146 118
Nashville Warbler Vermivora ruficapilla 113 29
Yellow Warbler Dendroica petechia 80 113
Yellow-rumped Warbler Dendroica coronata 588 163
Townsend’s Warbler Dendroica townsendi 667 62
American Redstart Setophaga ruticilla 17

Northern Waterthrush Seiurus noveboracensis 6

MacGillivray’s Warbler Oporornis tolmiei 554 157
Common Yellowthroat Geothlypis trichas 3

Wilson’s Warbler Wilsonia pusilla 138 14
Yellow-breasted Chat Icteria virens 47
Western Tanager Piranga ludoviciana 321 102
Black-headed Grosbeak Pheucticus melanocephalus 75 30
Lazuli Bunting Passerina amoena 72 163
Spotted Towhee Pipilo maculatus 59 155
Chipping Sparrow Spizella passerina 191 169
Vesper Sparrow Pooecetes gramineus 41
Lark Sparrow Chondestes grammacus 8
Savannah Sparrow Passerculus sandwichensis 3

Fox Sparrow Passerella iliaca 112 2
Song Sparrow Melospiza melodia 97 68
Lincoln’s Sparrow Melospiza lincolnii 6 1
White-crowned Sparrow Zonotrichia leucophrys 4 1
Dark-eyed Junco Junco hyemalis 683 198
Red-winged Blackbird Agelaius phoeniceus 7
Western Meadowlark Sturnella neglecta 8 44
Brewer’s Blackbird Euphagus cyanocephalus . 1
Brown-headed Cowbird Molothrus ater 39 50
Bullock’s Oriole Icterus bullockii 23
Pine Grosbeak Pinicola enucleator 5 1
Cassin’s Finch Carpodacus cassinii 27 20
Red Crossbill Loxia curvirostra 72 23
White-winged Crossbill Loxia leucoptera 10

Pine Siskin Carduelis pinus 213 37
American Goldfinch Carduelis tristis 6 49
Evening Grosbeak Coccothraustes vespertinus 38 6

Notes: We detected 121 bird species between the two study areas. This represents 50.6% of the 239 confirmed breeding

birds in Idaho (Stephens and Sturts 1998). Birds with =15 detections were modeled.

Valley and the Palouse agriculture lands. Most of the
Region 1 area is dominated by coniferous forest com-
munities that are in various stages of timber manage-
ment.

METHODS
BHR model construction

We followed the model building methods proposed
by Scott et al. (1993; see also Csuti {1996] and Smith

and Catanzaro [1996]). This method consisted of four
major steps: establishing a species list, defining spe-
cies range limits, collecting species habitat informa-
tion and determining habitat relationships, and mod-
eling the species habitat in a GIS using the infor-
mation gathered.

We selected only bird species that were detected at
=15 survey points out of 440 and 1628 sites on either
Craig Mountain or Region 1, respectively. We chose
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15 points of observation as the lower limit for species
selection because we felt that this would maximize the
number of species included while allowing sufficient
sample sizes to estimate kappa coefficients of agree-
ment (Cohen 1960). The 15-point limit also allowed

us to examine whether increased species detections -

yielded better accuracy estimates. In addition, we lim-
ited our list to breeding bird species observed in both
study areas, and since no birds reached their range
limits in our study areas (Groves et al. 1997), we omit-
ted the range definition step of Scott et al. (1993). At
the 15-point limit, we modeled 52 species on Craig
Mountain and 52 on Region 1, for a total of 65 species
between the two study areas (Table 1). We did not test
BHR models for an additional 56 species (46.3%) that
were detected at =14 stations. Because the lower limit
of 15 detections represents a higher percentage of sur-
vey points on Craig Mountain (3.4%) than Region 1
(0.9%), the possibility exists that we might include
species on Region 1 that would not have enough de-
tections for inclusion from the Craig Mountain data
set. We found three species that might fit this descrip-
tion: Pileated Woodpecker (scientific names in Table
1), Olive-sided Flycatcher, and Evening Grosbeak. Six
species (Willow Flycatcher, Chestnut-backed Chicka-
dee, White-breasted Nuthatch, Winter Wren, Wilson’s
Warbler, and Fox Sparrow) were detected in large num-
bers on Region 1, but were very rare or not detected
on Craig Mountain. This was due to Craig Mountain
either not containing appropriate habitat, or being out-
side (or on the edge of) the range of the species. There-
fore, we did not consider the fixed lower limit of 15
points to significantly effect our research.

We conducted a literature search to find relevant hab-
itat information for each bird species. We assumed that
Life Histories of North American Birds accounts (Poole
et al. 1997) provided comprehensive reviews of the
literature for a given species. For each species with a
published life history account, we used that account as
the primary reference for habitat information. In ad-
dition, we searched four databases for literature on the
remaining species: Essential Ecology, Zoology and
Plant Science Abstracts (NISC 1997a), Essential Or-
nithological Abstracts (NISC 1997b), Essential Wild-
life and Conservation Biology Abstracts (NISC 1997¢),
and Wildlife Worldwide (NISC 1997d). We then re-
viewed the references returned by the literature search
for pertinent habitat information and entered it into a
database. For all species considered, we took habitat
information from modeling efforts in Idaho (Groves et
al. 1997), Oregon (Csuti et al. 1997), Washington
(Smith et al. 1997), and Wyoming (Merrill et al. 1996).
Specifically, we looked for information on use of veg-
etation cover types, elevation, canopy closures, and tree
size classes. We chose these habitat variables for two
reasons. First, previous research has indicated that spe-
cies respond to these variables in habitat selection at
the scales we considered (Short and Williamson 1986,

J. W. KARL ET AL.
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Johnson and Grier 1988). Second, these habitat vari-
ables can be accommodated in a GIS.

We coded the habitat information using the scheme
developed by Redmond et al. (1996) (Table 2). Aspect,
canopy closure, and tree and shrub size class were
classified into discrete categories. We converted the
coded habitat relationships into a database table where
it could be accessed by the model construction pro-
grams.

We built a series of models differing in degree of
model complexity (the amount of habitat information
included) using a linear, additive process. This is a
sequential method of modeling that uses the previous
model as a template for the next model being created.
We found sufficient habitat information to make models
with two levels of complexity for every bird species
considered. The first model for each species was based
on cover type only. The second model also included
elevation (53 species [82%]), or if elevation was not
relevant based on lack of information in literature, then
canopy cover (seven species [11%]). Forty-two species
(65%) added canopy cover as the third level of model
complexity. Nine species (14%), for which four levels
of complexity were possible, were the only species for
which size-class information was available; therefore,
we omitted the fourth model due to such small number
of species.

We used the Current Vegetation Map of Northern
Idaho and Western Montana data of Redmond et al.
(1996) for the dominant cover type and canopy cover
values for northern Idaho. Patch size for forested cover
types averaged 45 * 1485 ha and 34 * 574 ha for
Region 1 and Craig Mountain, respectively (means *
1 sp). Patch size for nonforested cover types was 2 +
5 ha and 18 * 423 ha for Region 1 and Craig Mountain,
respectively. Redmond et al. (1996) reported produc-
er’s accuracy measures (probability of a pixel being
correctly classified [Congalton 1991]) for cover type
and canopy cover classifications on a scene-by-scene
basis (Table 3). Redmond et al. (1996) included ele-
vation, slope, and aspect measures from 1:24 000 dig-
ital elevation models (DEMs) in the coverage with the
vegetation measures. Redmond et al.’s (1996) data had
an original cell size of 0.09 ha, which we resampled
to 4 ha and 10 ha. These are commonly used data
resolutions. Because the Craig Mountain area is only
~60000 ha, spatial data resolutions of >10 ha would
not capture the variability of cover types on the area.
Also, when the Craig Mountain data was resampled to
resolutions >10 ha, the proportions of cover types be-
gin to change. For this reason we did not include res-
olutions >10 ha in our analyses.

A series of GIS programs automated the model con-
struction process. Vegetation cover type always formed
the first model for each species. We added habitat in-
formation to the vegetation-only model in the order of
elevation and canopy cover. If a habitat variable (e.g.,
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TABLE 2. Vegetatxon codes and descriptions of land cover types used in modeling avian habitats in Craig Mountain and

Region 1 in northern Idaho (from Redmond et al. 1996).

Code Land cover type Land cover description

1000 Urban Towns and cities

2000 Agricultural Row crops, dry farm crops, pastures, fallow fields

3101 Foothills grassland Grass and forb co-dominated dry meadows and ridges
associated with species such as: sagebrush (Artemisia
spp.), snowberry (Symphoricarpus spp.), and willow
(Salix spp.)

3102 Disturbed grassland Grasslands with >30% cover of noxious weeds and other
exotic species

3104 Montane parklands Grassland ridges, forest openings, and meadows domi-

and subalpine meadows nated by native perennial montane or subalpine grass

species

3202 Warm mesic shrubland Upland shrublands naturally occurring or initiated by fire
or clearcutting

4203 Lodgepole pine Coniferous forest with >66% lodgepole pine (Pinus con-
torta)

4206 Ponderosa pine Coniferous forest with >66% ponderosa pine (Pinus
ponderosa)

4207 Grand fir Coniferous forest with >66% grand fir (Abies grandis)

4208 Subalpine fir Coniferous forest with >66% subalpine fir (Abies bifolia)

4210 Western red cedar Coniferous forest with >66% western red cedar (Thuja
plicata)

4212 Douglas-fir Coniferous forest with >66% Douglas-fir (Pseudotsuga
menziesii)

4215 Western larch Coniferous forest with >66% western larch (Larix
occidentalis)

4220 Mixed subalpine forest Coniferous forest with <66% subalpine fir, with >10%
lodgepole pine, Douglas-fir, or Engelmann spruce

4221 Mixed mesic forest Coniferous forest codominated by western red cedar,
grand fir, western larch, or western hemlock

4222 Mixed xeric forest Coniferous forest codominated by Douglas-fir and pon-
-derosa pine

4223 Douglas-fir-lodgepole pine forest Coniferous forest with >80% Douglas-fir and lodgepole
pine

4225 Douglas-fir—grand fir forest Coniferous forest with >80% Douglas-fir and grand fir

4226 Western red cedar—grand fir forest Coniferous forest with >80% western red cedar and
grand fir

4301 Mixed needleleaf/broadleaf forest Forest with >25% and <75% cover of both coniferous
and deciduous forest

6101 Needleleaf-dominated riparian forest Coniferous forest in areas influenced by the presence of
running or standing water

6102 Broadleaf-dominated riparian forest Deciduous forest in areas influenced by the presence of
running or standing water

6103 Needleleaf-broadleaf riparian forest Woodlands codominated by coniferous and deciduous
trees influenced by the presence of running or standing

: water

6104 Mixed riparian Mixed forest and nonforest areas influenced by the pres-
ence of running or standing water

6201 Graminoid- and forb-dominated riparian Areas dominated by graminoids or forbs influenced by
the presence of running or standing water

6202 Shrub-dominated riparian Areas influenced by the presence of running or standing
water with >15% shrub cover and <15% tree cover

6203 Mixed nonforest riparian Areas influenced by the presence of running or standing
water codominated by shrubs and forbs

7300 .Exposed rock Cliffs, rock outcrops, talus slopes, scree

elevation) did not apply for a species, the program
skipped it and proceeded on to the next variable.

We then applied the models, which varied in com-
plexity, to 0.09-ha, 4-ha, and 10-ha resolution raster
GIS data for each species. This yielded up to nine mod-
el combinations for each species.

Breeding bird survey design and data collection

We used breeding bird survey data collected on Craig
Mountain in 1993, 1994 (Cassirer 1995), and 1997 (J.

W. Karl, personal observation), and on Region 1 in
1994-1996 (R. L. Hutto, personal observation), to as-
sess the performance of our BHR models. All of the
studies used methods comparable to Hutto and Hoff-
land (1996; see also Reynolds et al. [1980], Ralph and
Scott [1981], Ralph et al. [1995]). This was a variable-
radius, circular-plot method in which observers record
the species observed, distance, activity (flying or not
flying), and location of the bird (within or outside of
same cover type as the survey point). Each of the Craig
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TABLE 3. Producer’s accuracy measures for cover-type and
canopy cover classifications by scene as reported by Red-
mond et al. (1996).

Producer’s accuracy level (%)

Scene Cover type Canopy cover
P43/R26 83.60 (n = 103) 97.90 (n = 146)
P43/R27 63.45 (n = 118) 93.70 (n = 146)
P42/R26 63.77 (n = 124) 97.20 (n = 198)
P42/R27 71.23 (n = 479) 93.00 (n = 382)
P42/R28 53.35 (n = 320) 98.60 (n = 198)
P41/R27 53.89 (n = 1182) 95.40 (n = 262)
P41/R28 57.87 (n = 972) 95.20 (n = 328)

Note: Scenes were merged together, with the most accurate
scene taking precedence over less accurate ones in areas of
overlap.

Mountain points was surveyed two to four times per
year for up to three years. Each of the Region 1 points
was surveyed once per year for up to three years. For
Region 1 and the 1994 and 1997 Craig Mountain field
season, we recorded all birds detected aurally or vi-
sually within a 10-min count at each site. Cassirer
(1995) used a 5-min point count in 1993. Rarer species
were likely missed due to shorter sampling periods in
1993 (Dawson et al. 1995). However, because Craig
Mountain sites were sampled more than once per year,
and because we were interested only in the presence
or absence of a species at each point and not in esti-
mating density, we did not consider the discrepancy in
survey time between 1993 and other years a problem.
All birds detected outside of the cover type at the sur-
vey point were eliminated from the data set. We also
eliminated all birds that were flying when detected,
except for those birds whose detections are mostly re-
stricted to aerial foraging (i.e., swallows, swifts,
hawks).

We further truncated the data set to only those ob-
servations occurring within 50 m of the survey point
for two reasons. First, the ability to accurately judge
the distance of an observation and the cover type in
which it occurred decreases with distance from the sur-
vey point (Hutto and Hoffland 1996; see also Scott et
al. [1981]). Second, limiting the area of analysis around
the survey point reduces the potential for variation in
the values of the GIS data layers around the survey
point.

We converted differentially corrected global posi-
tioning system (GPS) coordinates for each of the Craig
Mountain survey sites into a GIS point coverage. We
received GIS coordinates for the Region 1 survey
points from the University of Montana’s Landbird
Monitoring Program. These coordinates were digitized
from georegistered aerial photographs of the study
area. We then converted the vector point coverages
from each study area to raster grids with a 0.09-ha cell
size.
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Assessment of model performance

We defined site-level of analysis as occurring for an
area of homogeneous vegetation <0.5 ha in size. This
corresponds to the area that can be sampled with a
single survey point. Thus, a given patch of vegetation
could consist of one or many sites. The cover-type level
of analysis is an aggregation of many sites of similar
vegetation type (e.g., grassland, shrubland, coniferous
forest). We assessed the performance of a BHR model
at the site and cover-type levels by examining the cor-
respondence between a species’ detection at a survey
point and the model’s prediction of the species’ oc-
currence there. Because a species could have been de-
tected anywhere within a 50-m radius of the survey
point, we used a three-cell by three-cell neighborhood,
totaling 8100 m?, around the survey-point cell (Fig. 2).

A series of programs in ARC/INFO GRID (Envi-
ronmental Systems Research Institute, Redlands, Cal-
ifornia) tallied the correspondence between model pre-
dictions and species occurrence at the site level for the
Craig Mountain and Region 1 areas. The program cod-
ed each model as 1 for predicted habitat and O for not
predicted. At each survey point we used the ARC/INFO
GRID FOCALMAX command to determine if there
was predicted habitat anywhere within the nine-cell
neighborhood (Fig. 2). If predicted habitat occurred
within the analysis window, then the survey point cell
received a value of 1. Otherwise it remained 0. Survey
data were coded in a similar manner: 1 for detected, 0
for not detected. At each survey point, the program
compared the binary values for species detections and

FIG. 2. The area associated with a variable-radius circular
plot survey truncated to 50 m can be represented in a GIS
with a 3 X 3 cell square of 0.09-ha cells. All birds detected

~within 50 m of the survey point were included in our study.

The dark-shaded cells represent area predicted as suitable
habitat by the species habitat relationship model. We used a
focal function in the GIS to look for occurrence of suitable
habitat within the 3 X 3 cell neighborhood.
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TABLE 4. General vegetation types used for cover-type level
assessment of model performance.

) Craig
Vegetation type Mountain Region 1

Agriculture X
Grasslands X X
Mesic shrubland X X
Xeric shrubland X
Deciduous forest X
Coniferous forest X X
Mixed coniferous/deciduous

forest X
Riparian/wetland X X
Rock/barren X X

Note: These categories are generalizations of a hierarchical
vegetation classification of Redmond et al. (1996) with plant
species at its finest level (see Table 2).

model predictions. With this coding scheme there are
four possible combinations: the species is detected and
predicted, the species is detected but not predicted
(omission error), the species is not detected but is pre-
dicted (commission error), or the species is not detected
and not predicted. The program tallied the number of
each of these four possibilities and output the result.

To define our cover-type level of analysis, we ag-
gregated the vegetation data layer used in model con-
struction (Redmond et al. 1996) to five and nine major
cover types for Craig Mountain and Region 1, respec-
tively (Table 4). For each study area we eliminated from
consideration any cover type that did not have any
survey points (i.e., agriculture, water). We then tallied
the species predictions vs. observations for each of the
cover types using methods similar to the site level cal-
- culations. For each study area, a species was considered
present in a cover type if it was detected one or more
times in that cover type.

We calculated the percentage omission (species de-
tected but not predicted) and commission errors (spe-
cies predicted but not detected) for each model. We
calculated percentage correct-presence predictions as
100 minus the percentage omission error and percent-
age correct-absence predictions as 100 minus the per-
centage commission error for each model.

To examine the differences between models, we cal-
culated Cohen’s kappa coefficient of agreement (Cohen
1960, Rosenfield and Fitzpatrick-Lins 1986) for each
of our 18 model combinations (three levels of com-
plexity, three spatial data resolutions, and two levels
of analysis). Kappa statistics are widely used in as-
sessing the accuracy of remotely sensed land cover
classifications (Congalton 1991) and represent the
... proportion of agreement (between a model and
actual observation) after chance agreement is re-
moved”’ ( Rosenfield and Fitzpatrick-Lins 1986). High
kappa values (»0) indicate a greater than chance agree-
ment between the model and the survey data. Kappa
values close to zero suggest only chance agreement
between the model and survey data. Negative kappa
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values occur when there is less than chance agreement
between the model and the field data (i.e., the model
predictions are opposite of the field data).

The weighted kappa (Cohen 1968, Fleiss et al. 1969,
Rosenfield and Fitzpatrick-Lins 1986), a derivation of
the standard kappa, can be used when the *serious-
ness”’ of each model outcome (i.e., commission error,
omission error, correct-occurrence prediction, or cor- .
rect-absence prediction) is not the same.

Due to the typically high number of commission er-
rors for BHR models (Krohn 1996), kappa estimates
are generally quite low and occasionally negative. For
the purposes of investigating model performance under
varied conditions, we assigned weightings of 0.5 to
commission errors and 1.0 to all other model outcomes
(i.e., correct-presence, correct-absence, and omission
error). Commission errors were given a lower weight-
ing since not all of measured commissions are true
errors (i.e., some species not observed, but predicted,
will in fact occur in the study area). In most cases, this
gave positive values for kappa.

Cohen (1960; see also Hudson and Ramm [1987])
provided the formula for calculating the approximate
large sample variance of a kappa statistic and a test of
significance between two kappa values using a Z test.
For each species, we calculated Z for each model com-
bination using the null hypothesis of

Hy: K,=0 '¢))

where K is the estimated weighted kappa, and m = 1,

2, ..., 18 for each species. Under this null hypothesis,
our Z test reduced to

Z = RYIVEK))™” @

Because the estimates of kappa and the variance of
kappa for the site level were calculated from 440 points
on Craig Mountain and 1628 points on Region 1 areas,
we considered them reliable measures. However, be-
cause we recognized only five and nine cover types for
the Craig Mountain and Region 1 areas, respectively,
estimates of kappa and the variance of kappa at those
levels of analysis were unreliable. Thus, we calculated
Z scores for only the site level of analysis.

Analysis of model performance

To analyze the effect of model complexity, data res-
olution, and level of analysis on model performance,
we used a completely randomized factorial design with
three levels of model complexity and three levels of
data resolution as factors for the site level of analysis.
Steinhorst (1979) described the use of factorial design
and the analysis of variance tools to investigate the
sensitivity of predictive models to changes in model
parameters. To test for differences between models, we
used the method of van Belle and Hughes (1984), in
which sums of squares from the Z scores are partitioned
using the completely randomized factorial design. We
interpreted significant interactions with graphs of the
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mean value of each model combination for one factor
plotted against another.

We were also interested in whether the changes in
model performance were due to change in correct-pres-
ence or correct-absence predictions. To determine this,
we conducted a canonical variate analysis within our
completely randomized factorial design with correct-
presence and correct-absence as response variables (see
Johnson and Wichern 1992). This analysis was con-
ducted at the site and cover-type levels for both Craig
Mountain and Region 1.

Because reliable Z scores could not be calculated for
the cover-type level of analysis, we could not use the
previously described methods to compare site and cov-
er-type levels of analysis. To examine the effects of
level of analysis on model performance, we compared
kappa values from the site and cover-type levels. We
also examined interaction graphs of kappa values at the
cover-type level to look for patterns of model perfor-
mance that were similar to the site level.

RESULTS

The chi-square analysis of Z scores for the site level
of analysis indicated a significant interaction between
model complexity and spatial data resolution for both
Craig Mountain and Region 1 (¢ = 0.05). This inter-
action precluded simple interpretation of the main ef-
fects of model complexity and spatial data resolution,
but graphs of the two-way interaction provided insight
as to the effects of these factors.

For both the Craig Mountain and Region 1 areas, we
observed that fine spatial data resolutions (e.g., 0.09
ha) provided the highest weighted-kappa estimates as
model complexity increased. For Craig Mountain, the
interaction graph of model complexity and spatial data
resolution at the site level indicated that changes in
spatial data resolution at low levels of model com-
plexity did not result in large changes in the perfor-
mance of the BHR model (Fig. 3a). However, as model
complexity increased, higher resolution data (i.e., 0.09
ha) yielded better results than the coarse resolution
(i.e., 4 ha and 10 ha) spatial data (f(w = 0.282, 0.157,
0.160 for 0.09 ha, 4 ha, and 10 ha, respectively). Each
spatial data resolution had its highest estimated kappa
at the second level of model complexity. The canonical
variate analysis for the model complexity X spatial data
resolution interaction indicates that the significance of
this interaction is driven both by changes in correct-
presence and correct-absence predictions (Table 5).

For Region 1, the interaction graph of model com-
plexity and spatial data resolution at the site level in-
dicates that increasing model complexity resulted in
higher estimated kappa values at all levels of spatial
data resolution (Fig. 3b). At the highest level of model
complexity, the 0.09-ha resolution gave the best results
(f(w = 0.206). For the 4-ha and 10-ha resolutions, the
highest estimates of kappa were from the second level
of model complexity (K, = 0.199 for both 4 ha and
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10 ha). The canonical variate analysis for the (model
complexity) X (spatial data resolution) interaction in-
dicated that the significance of this interaction was
driven both by changes in correct-presence and correct-
absence predictions (Table 5).

The cover-type level of analysis had higher estimates
of weighted kappas than the site level for all levels of
model complexity on both study areas, although the
kappa estimates tended to decrease with increasing
model complexity for both levels of analysis. We used
graphs of weighted-kappa estimates to examine the ef-
fect of level of analysis on the performance of BHR
models (Fig. 3c, d). Each model complexity had higher
estimates of kappa at the cover-type level across all
model complexities for Craig Mountain (K,, = 0.458,
0.448, 0.415 for 0.09-ha, 4-ha, and 10-ha resolutions,
respectively) and Region 1 (K, = 0.540, 0.530, 0.460
for 0.09-ha, 4-ha, and 10-ha resolutions, respectively).
The canonical variate analysis showed that this differ-
ence was due to changes in correct-absence predictions
across each area (Table 5).

We observed different effects of level of analysis for
each spatial data resolution between study areas. For
Craig Mountain, the graph of weighted kappa estimated
by level of analysis for each spatial data resolution
indicated little difference in model performance be-
tween the site- and cover-type levels of analysis at the
4-ha and 10-ha resolutions (Fig. 3e). At the 0.09-ha
resolution, however, there was a large difference be-
tween model performance at the site and cover-type
levels of analysis (K,, = 0.295 and 0.866 for site- and
cover-type levels, respectively). Results from canonical
variate analysis suggests that this difference is due
largely to changes in correct-absence predictions (Ta-
ble 5).

For Region 1, however, the two-way graph of weight-
ed-kappa estimates by level of analysis for each spatial
data resolution indicated higher model performance at
the cover-type level of analysis at all spatial data res-
olutions (Fig. 3f) (K, = 0.531, 0.509, and 0.511 for
0.09-ha, 4-ha, and 10-ha resolutions, respectively). Re-
sults from canonical variate analysis indicated that this
difference was due to changes in both model correct-
presence and correct-absence predictions (Table 5).

Overall, for the Craig Mountain area, the BHR mod-
els yielded 20-100% correct-presence predictions
across all model complexities, spatial data resolutions,
and levels of analysis, and 0-100% correct-absence
predictions. Weighted estimates of agreement ranged
from K, = 0.27 to R, = 0.58. The overall means for
predictions and agreement estimates on the Craig
Mountain area were 96.4 * 9.05% for correct-presence
(mean * 1 sp), 68.6 * 25.05% for correct-absence,

* and K,, = 0.36, respectively (Table 6). For each species

we averaged the correct-presence and correct-absence
measurement across all 18 model tests and plotted them
against the total number of sites where that species was
detected (Fig. 4). For Craig Mountain, we found cor-
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Fic. 3. Graphs of two-factor interactions for the Craig Mountain and Region 1 analysis. The graph of model complexity
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are obtained from any of the three spatial data resolutions. However, at higher levels of model complexity, better results
come at the 0.09-ha data resolution. (b) Two-way interaction graph for model complexity by spatial data resolution for Region
1 indicates that model performance generally increases as model complexity increases. At the highest level of model com-
plexity, the 0.09-ha data resolution performs best. The cover-type level of analysis performs better at all levels of model
complexity in (c) Craig Mountain and (d) Region 1. (¢) A graph of spatial data resolution by level of analysis for Craig
Mountain indicates that model performance is affected greatly by the level of analysis at the 0.09-ha resolution. At the 4-
ha and 10-ha resolutions, there is little difference between the site and cover-type levels of analysis. (f) The Region 1 graph
of spatial data resolution by level of analysis indicates higher model performance from the cover-type level of analysis at
all levels of spatial data resolution.
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TABLE 5.
Mountain and Region 1 areas.

J. W. KARL ET AL.
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Within-design canonical structure for the first canonical variate for the BHR model performance from the Craig

Complexity Complexity by Level by
Study area Complexity Level Resolution by level resolution resolution
Craig Mountain’ :
Correct-presence 0.9574 0.9086 0.5474 —-0.1327 0.9615 —0.0194
Correct-absence —0.6190 0.0562 0.5785 0.9710 —0.6076 0.9376
Region 1
Correct-presence 0.8057 0.2149 —0.2255 0.0386 0.9650 0.7559
Correct-absence ~0.7575 0.9039 1.0000 0.9653 —0.4714 -0.8071

Note: The first canonical variate for each main effect and interaction accounted for >97% of the variation between treatment

groups from each area.

relations between number of species detections and
BHR model performance. Correct-presence predictions
of the models tended to decrease for the more abundant

species (adjusted r> = 0.42, P < 0.0001). Correct-ab-

sence predictions increased as species became more
abundant (adjusted > = 0.35, P < 0.0001). However,
the correct-absence predictions of the models for the
three most abundant species (Spotted Towhee,
MacGillivray’s Warbler, and American Robin) were
considerably lower than predicted by the linear re-
gression. The American Crow had the lowest average
correct-absence prediction for Craig Mountain (38.2%)
but one of the highest measures of correct-presence
predictions (99.3%). Most of the n = 34 species for
Craig Mountain had correct-presence predictions
>90% and correct-absence predictions >50% (Fig. 4a).

For the Region 1 area, the BHR models yielded 56—
100% correct-presence predictions across all possible
model combinations. Correct-absence predictions
ranged from 0.17% to 100%. Weighted estimates of
agreement ranged from K, = 0.17 to K,, = 0.52. The
overall means for correct-presence predictions, correct-
absence predictions, and weighted agreement estimates
on the Region 1 area were 96 * 7.34% (mean * 1 sD),
65 + 27.34%, and K,, = 0.35, respectively (Table 6).
For Region 1 (Fig. 4b) we found only a weak corre-
lation between the correct-presence predictions of the
BHR models and the number of sites where a species
was detected (adjusted 2 = 0.09, P = 0.0360). We
found a stronger positive correlation between BHR cor-
rect-absence predictions and the number of sites where
a species was detected (adjusted r2 = 037, P <
0.0001). All species on the Region 1 area with average
correct-absence predictions >70% were detected at
>70 survey sites. Three Region 1 species had average
correct-absence predictions < 50%: Evening Grosbeak
(48%), Hairy Woodpecker (46%), and Ruffed Grouse
(44%). Each of these species had average correct-pres-
ence predictions of >95%.

Species that have larger home ranges (>10 ha), such
as the American Crow, Evening Grosbeak, Northern
Flicker, or Gray Jay, had low correct-absence predic-
tions for both Craig Mountain and Region 1. Also,
species with somewhat specific habitat requirements
and smaller home ranges, such as the Brown Creeper,

Cedar Waxwing, or Canyon Wren, had average correct-
absence predictions <70%.

DISCUSSION

The differences in effect of model complexity be-
tween study areas may be due to differences in land-
scape heterogeneity between the two. The vegetation
of Region 1 was dominated by coniferous forests, and
the majority of the Region 1 survey points were located
in that habitat. When modeling the habitat on Region
1 for a species associated with coniferous forest, se-
lection of that cover type in the GIS would result in
prediction of large, continuous areas as suitable habitat.
For rare species, this could result in a model that ov-
erpredicted suitable habitat, resulting in a large number
of commission errors, and a corresponding low weight-
ed-kappa estimate. By increasing the complexity of the
model, thus reducing the area predicted as habitat, we
decreased the commission errors at a greater rate than
the rate at which the omission errors were increasing.
This resulted in an overall rise in weighted-kappa es-
timates. v

The Craig Mountain area, conversely, had a very
heterogeneous landscape codominated by dry grass-
lands and coniferous forests. There was also a signif-
icant riparian vegetation component. The survey points
on Craig Mountain were proportionally distributed
among all major cover types. In this area, selection of
coniferous forest types resulted in a smaller proportion
of the landscape predicted as habitat. Increasing model
complexity raised the rate of omission errors faster than
the rate of commission errors decreased. This resulted
in an overall decrease in weighted-kappa estimates as
model complexity increased.

By adding layers of complexity to a BHR model, we
attempted to reduce the amount of commission error
for that model. By doing so, we increased the ability
of that model to correctly reject unsuitable habitat. The-
oretically this increased the ability of the model to
correctly predict species absence. At the same time,
however, it was difficult to maintain the desired level
of correct-presence predictions. Block et al. (1994) de-
scribed a trade-off between omission and commission
errors. They reported that by varying BHR model pa-
rameters, they increased the omission error rate and
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TABLE 6. BHR (bird habitat relatlonshlp) model performance measures for each of the independent variables for the Craig

Mountain and Region 1 areas.

Craig Mountain Region 1
Correct- Correct- Correct- Correct-
Independent presence (%)  absence (%) Kappa presence (%)  absence (%) Kappa
variable Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Model complexity
1 layer 98.11 4.1 64.15 244 037 0.26 98.78 2.7 5421 298 034 025
2 layers 97.83 43 67.08 246 038 026 9623 59 6554 251 037 0.24
3 layers 91.2 162 7846 242 030 029 9039 109 80.0 172 033 0.24
Spatial data resolution
0.09 ha 97.95 45 745 239 058 034 95.84 72 6401 279 035 025
4 ha 95.93 9.6 6559 247 025 0.13 9585 74 6479 27.1 034 0.24
10 ha 95.39 96 6555 255 024 0.12 9582 7.4 6493 272 034 0.24
Level of analysis
Site 94.52 7.6 6923 240 027 0.14 95.11 6.2 5373 323 0.17 0.09
Cover type 98.32 10.0 67.87 261 044 033 96.57 83 7542 148 052 0.23

decreased the commission error rate and vice versa.
Our results support their findings to some degree, but
we also observed that commission and omission error
did not change at the same rate. Increasing model com-
plexity resulted in a much greater decrease in com-
mission errors than increase in omission errors, at least
for Region 1, resulting in an overall increase in model
performance.

The effect of spatial data resolution on the perfor-
mance of BHR models was dependent on the other
parameters of the model. The reason for this was again
related to the difference in heterogeneity between the
Craig Mountain and Region 1 landscapes. When the
heterogeneous landscape of Craig Mountain was re-
sampled to a coarser spatial data resolution, areas with
high degrees of complexity that were smaller than the
resampling unit were changed into the cover type dom-
inant in that cell. Thus, resampling had a simplifying
effect on heterogeneous landscapes. This could result
in higher omission error rates due to small habitat
patches being lost and higher commission error rates
due to overrepresentation of major cover types. Be-
cause the Region 1 landscape was relatively homoge-
neous, large blocks of coniferous forests did not change
shape or size much when resampled to a coarser unit
(e.g., 4 ha or 10 ha). Therefore, the effect of spatial
data resolution on the performance of BHR models was
related to the heterogeneity of the landscape to which
the models were applied.

The cover-type level of analysis produced higher
weighted-kappa estimates than the site level in all ap-
plications except with the 4-ha and 10-ha spatial data
resolutions on Craig Mountain. This again was likely
due to the loss of detail from the heterogeneous Craig
Mountain landscape when it was resampled to 4 ha and
again to 10 ha.

We currently lack critical information on the ability
of habitat-relationship models to predict the habitats of
uncommon, wide-ranging species. Because we limited
our species list to those with =15 sites of observation,

we were not considering the most uncommon species
within each area. The high correct-presence predictions
(mostly >90%) and low correct-absence predictions
(mostly <70%) for species with <50 sites of obser-
vation may be a reflection of inadequate data for good
estimates of model performance. In this case, the ap-
parent error component of observed commission error
may be contributing to the large difference between
mean correct-presence and correct-absence estimates.
It may take a large number of observations to achieve
reliable estimates of model performance (Fig. 4). The
number of points necessary is likely dependent on the
size of the area modeled. Obtaining reliable estimates
for less-common species is challenging because of the
time and cost associated with collecting sufficient sam-
ple sizes. However, less-common species could poten-
tially benefit the most from valid habitat-relationship
models. Therefore, the expense of validating models
for these species may be warranted.

Block et al. (1994) recommended at least 5 yr of
field sampling to detect 98% of the species that would
occur in an area and to gain reliable estimates of model
performance. Krohn (1996) took a more condervative
view, recommending 10 yr of surveying to ensure that
most rare and incidental species are detected. Because
of our large number of survey points, we feel confident
that we detected most of the species occurring within
our study areas after 3 yr of breeding bird surveys. The
number of new species detected on Region 1 was <5%
after 1 yr (P. J. Heglund, unpublished manuscript).
However, we are highly confident in our measures of
BHR model performance for only the most abundant
species detected.

Theory of testing model performance

Bird species most likely use habitat in a continuous
fashion (Wiens 1989), not as discretely as suggested
by most habitat models. However, when predicting the
presence or absence of a species at a given geographical
location, there are only two possible types of measur-
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FiG. 4. Average model performance for bird species plot-
ted against the number of sites where each species was de-
tected. (a) For Craig Mountain, the least-squares regression
lines indicate a decrease in correct-presence predictions as
species became more common (r2 = —0.42, P = <0.0001)
and an increase in model correct-absence predictions as spe-
cies became more common (2 = 0.35, P = <0.0001). (b)
For Region 1, the least-squares regression lines suggest that
correct-presence predictions do not change much as species
become more abundant but that correct-absence predictions
increase. This would lead to an overall increase in model
performance for the more abundant species.

able model error, omission and commission error. A
graphical representation of these different types of er-
ror rates is helpful (Fig. 5). Habitat selection for most
species occurs nonlinearly along an environmental gra-
dient (Whittaker 1967, Wiens 1989). The species is
most abundant at some point along the continuum and
decreases in abundance away from that point in either
direction. For simplicity, we provide only one side of
the habitat-selection curve. By modeling species oc-
currence, the modeler attempts to simulate the habitat
selection of a species (represented as a curve) with
discrete modeling methods (represented by the shaded
box). With our method of modeling, which recognized
only suitable or unsuitable habitat, a certain amount of
error is inevitable. The modeler must decide the impact
of omission and commission error to the model out-
come and adjust the model accordingly. Difficulty in

J. W. KARL ET AL.

Ecological Applications
Vol. 10, No. 6

measuring commission errors stems from differences
between the actual habitat-use function for a species
and that observed during field surveys. The difference
between these two functions constitutes the apparent
error component of commission error estimates.

Observations of a species give direct insight to the
performance of a habitat-relationship model. If a spe-
cies was observed in an area where it was predicted to .
occur, then the model performed correctly. Because
these occurrence predictions represented the probabil-
ity of correctly failing to reject our null hypothesis of
habitat suitability, they contributed directly to the ac-
curacy of the model. However, an omission error, ob-
serving a species where it was not predicted, is a def-
inite model error, as long as the model was not used
outside of its intended limits (season of use or geo-
graphic range) (Dedon et al. 1986). Because omissions
represent the probability of rejecting a true null hy-
pothesis (Type I error), they detracted directly from the
accuracy of the model.

Theoretically, predictions of absence represent the
probability of correctly rejecting a false null hypothesis
of equal habitat suitability. However, measured com-
mission errors and predictions of species absence are
uncertain indicators of model performance because
they consist of two components: true error in that the
species does occur and should not be modeled, and
apparent error in that the species does occur but was
missed in the field surveys (Dedon et al. 1986, Scott
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Fi1G.5. A graphical representation of the theory of habitat-
relationship model testing. Habitat selection in most species
occurs along a continuum, represented in the graph by the
curve. This method of modeling seeks to approximate this
continuous event by discrete means, represented by the shad-
ed portion of the graph. Omission errors (species is detected
where not predicted) occur when the model does not include
enough habitat types for a species. Commission errors (spe-
cies is not detected where predicted) occur because of over-
prediction of suitable habitat. Overestimation of commission
error rates occurs when the habitat use function is approxi-
mated incorrectly from field data. When using a discrete mod-
eling method to simulate a continuous phenomenon, errors
are unavoidable, and thus model users must make a priori
decisions as to what error types are most critical to avoid.
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et al. 1993, Block et al. 1994, Edwards et al. 1996,
Krohn 1996). The latter component is not measurable
in most field applications. Hence, measurements of
commission error are usually an overestimate of true
model error. A species may not have been detected
because it did not occur or because it was missed due
to inadequate sampling (Nichols et al. 1998). The in-
ability to detect a species due to poor survey design,
inadequate survey duration (too few years of survey-
ing), or spatial and temporal variation in species dis-
tribution within its habitat can inflate the estimated
commission error rate (Scott et al. 1993, Cassidy et al.
1994, Krohn 1996). Species that are rare, or have low
population densities or low detection rates, may also
inflate commission error rates (Krohn 1996, Boone and
Krohn 1999). Block et al. (1994) and Krohn (1996)
observed that commission errors tended to decrease as
duration of the surveys increased. They both expected
the rate of commission errors to asymptotically de-
crease toward the true model commission error. Our
results (Fig. 4) support this.

Boone and Krohn (1999) reported that the likelihood
of correctly predicting the presence of avian species
could be estimated based on certain species attributes
such as niche width, relative abundance, and home
range size. Under this hypothesis, species that were
common, occurred in a wide range of habitat types, and
occupied small home ranges would be most likely to
be modeled accurately (high correct-presence and cor-
rect-absence predictions). Our results for Craig Moun-
tain and Region 1 support this. Our models from both
study areas show that more-common species tend to
have higher correct-absence predictions than the less-
common ones (Fig. 4). However, the pattern we ob-
served may be an artifact of inadequate sample sizes
to reliably estimate accuracy of uncommon species.

Ideally, the investigator would select a minimum lev-
el of correct-presence predictions for the model (i.e.,
maximum omission error rate). This could be deter-
mined, in part, by the risks associated with making an
omission (Type I; Dedon et al. 1986) vs. commission
(Type II) error. Avery and VanRiper (1990) considered
omission errors more serious modeling errors than
commission errors. Dedon et al. (1986) concluded that
extensive commission errors could also be the result
of modelers trying to avoid omission errors. For ex-
ample, if a manager were interested in determining the
potential impacts of a management decision on a sen-
sitive species, they would demand higher correct-pres-
ence predictions (lower omission error) than if they
were setting up a sampling scheme to search for nest
sites. The correct-absence predictions of the model
could then be brought up to the desired level by re-
striction of model parameters and increased species
detections. The critical assumption in this case is that
the habitats that are used very infrequently (and thus
become omission errors) are not essential habitats.

Many evaluations of habitat-relationship model per-
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formance (e.g., Block et al. 1994) have not considered
the case of their model correctly predicting species
absence. Given the purpose of habitat modeling in
many cases is to exclude areas of unsuitable habitat
from a greater region where the species is known to
occur (Scott et al. 1993, Butterfield et al. 1994, Csuti
1996), this statistic should be of considerable interest.
However, this statistic is difficult to measure for the
same reasons that true commission errors are difficult
to measure.

The potential exists that suitable habitat exists for a
species but is not occupied at the time of survey (Fret-
well and Lucas 1970). This situation would result in
underestimation of correct-absence measures (overes-
timating commission error). Krohn (1996) believed that
more complex models, incorporating multiple data lay-
ers, should be less sensitive to dynamic habitat use.
This is because *‘if enough data are available to justify
a presumably more complex habitat model, the density
effects on habitat occupancy should be better under-
stood than the simple species—vegetation associations”
(Krohn 1996:150).

Conclusion

Overall, our results suggest that model complexity,
spatial data resolution, and level of analysis play in-
tegral parts in determining the performance of habitat-
relationship models. Changes in the ability of the model
to predict species absence accounted for most of the
difference in habitat-relationship model performance
in our applications. Our results demonstrate that:

1) Species abundance affected the ability to test hab-
itat-relationship models. The number of observations
necessary to achieve reliable estimates of error likely
depends on scale of model application.

2) Increasing model complexity improved accuracy
on relatively homogeneous landscapes, whereas fine
spatial data resolution improved model performance on
heterogeneous landscapes.

3) Increasing model complexity resulted in a greater
decrease in commission error than increase in omission
error. This increased model accuracy overall.

4) The cover-type level of analysis performed better
than the site level across all model complexities on
each study area, suggesting that this method of mod-
eling might perform better at coarser scales.

Survey requirements for testing habitat-relationship
models should be based on a minimum number of de-
tections for a species and not a specified number of
years. Given proper study design, it should be possible
to obtain sufficient data to test habitat-relationship
models for certain abundant species with one season
of surveys. For other less abundant species, it may take
many years of very specialized surveys to gather
enough observations to make reliable estimates of mod-
el performance. For rare species, obtaining sufficient
detections could be prohibitively expensive. In this
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case, adjustment of error rates based on species attri-
butes (see Boone and Krohn 1999) may be necessary.
Ultimately, the level of model correct-presence pre-
dictions and correct-absence predictions that is ac-
ceptable will be determined by the application of the
model. In some instances, the modeler may wish to
sacrifice some correct-absence predictions and slightly
overpredict the distribution of a species. For example,
when examining the potential effects of a management
decision on a threatened or endangered species, the
manager may warnt to overpredict the distribution of
the species, rather than risk jeopardizing essential hab-
itat. Conversely, some situations may necessitate high
correct-absence predictions at the cost of decreased
model correct-presence predictions. Determining areas
to sample for bird nests to characterize nesting habitat
might be an example of this given that underestimating
available habitat would not have dire consequences.
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