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Abstract

How extinct, non-avian theropod dinosaurs moved is a subject of considerable interest and

controversy. A better understanding of non-avian theropod locomotion can be achieved by

better understanding terrestrial locomotor biomechanics in their modern descendants,

birds. Despite much research on the subject, avian terrestrial locomotion remains little

explored in regards to how kinematic and kinetic factors vary together with speed and body

size. Here, terrestrial locomotion was investigated in twelve species of ground-dwelling bird,

spanning a 1,780-fold range in body mass, across almost their entire speed range. Particu-

lar attention was devoted to the ground reaction force (GRF), the force that the feet exert

upon the ground. Comparable data for the only other extant obligate, striding biped,

humans, were also collected and studied. In birds, all kinematic and kinetic parameters

examined changed continuously with increasing speed, while in humans all but one of those

same parameters changed abruptly at the walk-run transition. This result supports previous

studies that show birds to have a highly continuous locomotor repertoire compared to

humans, where discrete ‘walking’ and ‘running’ gaits are not easily distinguished based on

kinematic patterns alone. The influences of speed and body size on kinematic and kinetic

factors in birds are developed into a set of predictive relationships that may be applied to

extinct, non-avian theropods. The resulting predictive model is able to explain 79–93% of

the observed variation in kinematics and 69–83% of the observed variation in GRFs, and

also performs well in extrapolation tests. However, this study also found that the location of
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the whole-body centre of mass may exert an important influence on the nature of the GRF,

and hence some caution is warranted, in lieu of further investigation.

Introduction

What would an eight tonne Tyrannosaurus rex have looked like moving at 5 m s-1? Could it

have managed to move as fast as 10 m s-1, or faster? A perennial question of interest for

palaeontologists is how extinct animals appeared and behaved when they were alive. Perhaps

more than any other animal group, theropod dinosaurs have received considerable attention

as to how they stood and moved, owing to their evidently carnivorous lifestyle and the gigantic

sizes that many species attained, despite their bipedal stance [1]. In particular, lively debate has

persisted for decades as to the athletic capabilities of the largest theropods, especially the non-

avian species such as Tyrannosaurus, Giganotosaurus and Allosaurus [2–11].

One way of better understanding how extinct theropods moved is to examine locomotion

in extant theropods, birds, because birds retain many (homologous) anatomical similarities to

their ancestors [12–18]. Additionally, humans, as the only other extant obligate, striding

biped, also serve as an important source of information concerning bipedal locomotion in

extinct theropods. By identifying and understanding the similarities and differences between

bird and human locomotion, it is possible to elucidate fundamental aspects of obligate striding

bipedalism, and those that are influenced by anatomical or postural differences.

Previous studies have indicated that terrestrial locomotion in modern birds is considerably

different from that in humans. Birds employ a crouched, digitigrade, parasagittal posture,

whereby the femur is subhorizontally oriented for much of the stride, and where the majority

of limb movement occurs at the knee, driven by the ‘hamstring’ muscles [19–33]. This reflects

the location of their whole-body centre of mass (COM), which is markedly anterior to the hips

[31,34]. The gaits of birds also appear to be less discrete than those of humans, because birds

employ a ‘grounded run’ at intermediate speeds of locomotion [21,22,28,30,35–39]. During

grounded running, the whole-body COM oscillates with little exchange of kinetic and poten-

tial energies (i.e., kinetic and potential energies oscillate out of phase; characteristic of human

running), yet duty factors are greater than 0.5 (no aerial phase; characteristic of human walk-

ing). Only at greater speeds do duty factors decrease below 0.5, resulting in running with an

aerial phase. Thus, while ‘walking’ and ‘running’ are easily recognizable in humans, the dis-

tinction is less obvious in birds.

One aspect of avian terrestrial locomotion that remains less explored, in comparison to

humans, is how kinematics and kinetics change together with increasing speed, or how these

are influenced by body size (especially in a comparative context). The potential influence of

body size is particularly pertinent, given the large sizes that many extinct theropods attained,

greater than those observed in extant species. The effect of speed on kinematic parameters

have been investigated many times previously [19,22,28,30,36–38,40–42]; yet, starting with the

seminal work of Gatesy and Biewener [21], only a handful of studies have examined speed

effects across species of different body size [24,29,32,43]. Of the few studies that have examined

speed effects on kinetic parameters [28,30,37,44–47], only three have investigated more than a

single species [45–47]. Even then, only mechanical energy fluctuations were examined, whilst

many other kinetic aspects such as forces (external or internal), joint moments or powers

remain to be explored. Consequently, there is a need for further exploration and integration of

how the fundamental aspects of terrestrial locomotion are modulated by speed and body size
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in ground-dwelling birds. Without a better understanding of speed or size effects on locomo-

tion, this hampers attempts to quantitatively characterize locomotion in extinct theropods,

through empirical extrapolation or theoretical modelling [e.g., 5–7,10,48,49,50]

The present study builds upon previous research in an attempt to better understand loco-

motor biomechanics in both extant and extinct theropods. Its primary objective is to examine

how several basic kinematic and kinetic variables of terrestrial locomotion vary with speed and

body size in modern ground-dwelling birds, with the view to deriving predictive relationships

that can be applied to extinct theropods. The ability to better predict these variables for extinct

theropods will facilitate improved attempts at understanding their locomotor behaviour

through biomechanical modelling (e.g., [5–7,10,11,48,50]). A key feature of interest is the

ground reaction force (GRF), the force that the feet exert upon the ground during locomotion.

As a reaction force, it represents the summation of accelerations of all the individual compo-

nents of the body during movement, and is fundamental to understanding the forces,

moments and stresses occurring within the limbs of an animal during locomotion [7,35,51–

56]. Despite its importance, the GRF has been measured in relatively few species of birds, in

the course of investigating other biomechanical parameters [26,30,33,35,37,40,46,53,57–61].

Hence, not enough is currently known about how the GRF varies in time and space through-

out the stance phase in different bird species, or how this varies with speed or body size, to the

point that quantitative predictions may be made for other theropods (avian or non-avian).

This study also aimed to further compare locomotion between birds and humans, building

upon previous work such as that of Gatesy and Biewener [21], to better elucidate the underly-

ing similarities and salient differences between the two groups. In addition to better character-

izing avian terrestrial locomotion, this can help identify those aspects of obligate striding

bipedalism that are influenced by anatomical or postural differences. In turn, this will provide

guidance on the use of any predictive relationships derived herein.

Methods

A summary of the methodology employed in this study is given below; a detailed outline is pre-

sented in the Supporting Information (S1 Appendix). Two data sets were collected: three-

dimensional (3-D) kinematic and kinetic data for modern ground-dwelling bird species and

3-D kinetic data for humans. All experimental protocols used in this study were approved by

the Griffith University and University of Queensland research ethics committees (approvals

AHS/01/14/AEC, SBS/102/14/ARC). Collection of the three wild bird species was approved by

the Queensland Department of Environment and Heritage Protection (permit

WISP14699514). Written informed consent was obtained from the human subjects prior to

the study.

Since the distinction between ‘walking’ and ‘running’ is not often clear in birds (as noted

above), the use of these terms for describing gait is herein restricted to the observations for

humans, where ‘walking’ and ‘running’ are easily distinguished, by either kinematic or kinetic

criteria. No attempt is made to define gaits for the birds studied; the observations are reported

and interpreted here in terms of speed, rather than a particular gait.

Bird data

Animals studied. Twelve species of ground-dwelling bird were studied (Table 1), ranging

from 45 g Chinese painted quail to 80 kg ostriches. Only ground-dwelling species were investi-

gated here because, by virtue of spending most or all of their time on the ground, they have

well-developed hindlimb locomotor systems. Data for tinamous, ostriches and emus had been

collected in previous studies (tinamous: [37]; ostriches: [25,60]; emus: [62]). Given logistical
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limitations and the objectives of this study, preference was given to maximizing the diversity

of bird species investigated, rather than achieving a greater number of replicates for fewer spe-

cies. All birds investigated in the present study were considered to be adults based on skeletal

maturity, with the possible exception of the domestic turkeys, which had sizeable chondroepi-

physes (as revealed in postmortem dissections), but were of adult size. Kinematic data for all

species were collected using 3-D motion capture techniques, except that for the tinamous

where only a single camera was used, placed perpendicular to the direction of travel [37]. GRF

data was collected in three dimensions for all species.

Data collection

In the present study, a small indoor racetrack was used for the three quail species, and a larger

outdoor racetrack was used for the remaining species. Both racetracks were walled around

their entire perimeter, but the middle of one side was replaced with either clear acrylic or fine

wire mesh, through which filming of the birds took place. Birds were filmed at 50–250 frames

second-1 with two high-speed light video cameras (IL3-100 and HiSpec1, Fastec Imaging Cor-

poration, San Diego, California, USA), synchronized using a manual trigger pulse. For both

racetracks, a calibration volume for each day’s trials was established using an 11-coefficient

direct linear transform [63].

Custom-built forceplates were mounted in the middle of both racetracks; both were covered

with fine grit sandpaper and flush with the surrounding racetrack surface. In the small race-

track, the forceplate comprised a plastic top plate secured to a six degree-of-freedom force-tor-

que sensor (ATI nano17; ATI Industrial Automation, Apex, North Carolina, USA). In the

large racetrack, one of two forceplates was used. The first one, used for the majority of data col-

lection, has been described in detail elsewhere [64]. The second forceplate, used in the collec-

tion of a portion of the guineafowl data, comprised a plastic top plate secured to a six degree-

of-freedom force-torque sensor (ATI gamma; ATI Industrial Automation). The forceplates

were operated through an analogue-digital converter (NI USB-6343, National Instruments,

Austin, Texas, USA), which sampled data at 10 kHz using a custom LabVIEW 2012 script

(National Instruments). Cameras were synchronized with each other and the forceplates using

a manual trigger pulse.

Table 1. The species of bird studied. Reported are sample sizes and mean (± s.d.) masses, hip heights and total leg lengths (sum of interarticular lengths of femur, tibio-

tarsus and tarsometatarsus).

Species n Mass, kg Hip height, mm Leg length, mm Data collected

scientific name common name

Coturnix chinensis Chinese painted quail 3♂, 2♀ 0.047 ± 0.002 58.6 ± 4 84 ± 3.2 this study

Colinus virginianus Northern bobwhite quail 3♂, 2♀ 0.17 ± 0.014 77.8 ± 10.4 133.2 ± 2.8 this study

Coturnix japonica Japanese quail 1♂, 3♀ 0.301 ± 0.077 106.3 ± 7.5 140.5 ± 8.7 this study

Porphyrio porphyrio Purple swamphen 3♀ 0.623 ± 0.058 239 ± 14.1 287.7 ± 9.1 this study

Eudromia elegans Elegant-crested tinamou 3 0.756 ± 0.013 172 ± 6.7 n/a ref. [37]

Numida meleagris Helmeted guineafowl 2♂, 1♀ 1.257 ± 0.114 201.7 ± 15.5 249.3 ± 8.3 this study

Alectura lathami Australian brush turkey 2♀ 1.49 ± 0.057 267 ± 15.6 309.5 ± 2.1 this study

Threskiornis moluccus Australian white ibis 2♂ 1.54 ± 0.057 282.5 ± 30.4 342 ± 15.6 this study

Gallus gallus Domestic chicken (white leghorn breed) 1♂, 2♀ 1.71 ± 0.521 254.3 ± 47.8 284.3 ± 43.8 this study

Meleagris gallopavo Domestic turkey (various mixed breeds) 2♂, 3♀ 3.228 ± 0.9 365.2 ± 47.4 406.8 ±49.3 this study

Dromaius novaehollandiae Emu 6♀ 38.58 ± 2.69 903.3 ± 35.0 1005.5 ± 25.9 ref. [62]

Struthio camelus Ostrich 3♂ 74.35 ± 6.15 1128 ± 14.1 1181 ± 0 refs [25,60]

https://doi.org/10.1371/journal.pone.0192172.t001
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Prior to data collection, feathers from the back half of the birds were clipped, as were the

wings, so as to allow the placement of small (2–5 mm diameter) markers, and so that the cam-

eras’ views of the markers during locomotion was not obstructed. Up to three markers were

placed on the midline of the back, along the sacrum. A single marker was placed over the tro-

chanteric crest of each hip, which in all species was easily palpable. The base of the claw of

digit III of both feet was also marked with non-toxic, white acrylic paint.

Birds moved down the racetrack and over the forceplate on their own accord at a self-

selected speed, although sometimes additional motivation was used, such as making loud

noises. A wide range of speeds was studied; the slowest incorporating substantial periods of

double limb support and the fastest involving substantial aerial phases. Birds were also filmed

during stationary standing, allowing the capture and measurement of the height of the hip

marker on the birds, which was taken as standing hip height. After concluding the experi-

ments, the birds were euthanased by cervical dislocation and immediately massed. The right

leg was then dissected free of soft tissue and the interarticular lengths of the femur, tibiotarsus

and tarsometatarsus measured (excluding trochanters or crests). The sum of these lengths is

taken to be the total leg length, L.

Kinematic data processing

The back and toe markers were digitized and their 3-D coordinates calculated using

DLTdv5 [63], a program written for MATLAB (version 8.0, MathWorks, Natick, Massa-

chusetts, USA). From the digitized marker trajectories four kinematic parameters were

determined: mean forward speed (v), stance duration (tstance), stride length (S) and duty

factor (β, the proportion of the stride for which a given foot is on the ground). In some

instances, the vertical component of the GRF was also used in the calculation of β, by

identifying the onset and offset of vertical force above the background level of noise. In

standing trials, the hip marker was digitized and its coordinates calculated, either using

DLTdv5 or using a reference object of known dimensions within the field of view of the

cameras. The calculated z-coordinate of the hip marker was taken as the standing hip

height h of the bird. For each trial, speed, stance duration and stride length were normal-

ized to the standing hip height of the individual bird, as follows:

v� ¼
v
ffiffiffiffiffi
gh

p ; ð1Þ

tstance
� ¼ tstance �

ffiffiffi
g
h

r

; ð2Þ

S� ¼ S=h; ð3Þ

where g is the acceleration due to gravity, 9.81 m s-2. As defined here, relative speed v� is

equal to the square root of the Froude number (‘dimensionless speed’) as often used in

other studies (e.g., [65,66]).

GRF data processing. The raw forceplate data were processed and converted to Newtons

using a set of custom MATLAB scripts [64]. Each channel was filtered with a fourth-order,

zero-lag Butterworth low-pass filter; the cutoff frequencies used removed noise without atten-

uating signal peaks, and were chosen based on visual comparison of the filtered versus unfil-

tered data. These varied between 15–100 Hz, depending on the forceplate used and species in

question. The ostrich force data had previously been filtered at 15 Hz [60]. Lastly, the mea-

sured forces were corrected for the direction of heading of the bird and the foot (left or right)

Avian terrestrial locomotor biomechanics

PLOS ONE | https://doi.org/10.1371/journal.pone.0192172 February 21, 2018 5 / 40

https://doi.org/10.1371/journal.pone.0192172


that contacted the forceplate, so as to express them in a consistent anatomical coordinate sys-

tem: +x is forward, +y is medial and +z is upwards.

Human data

Data collection. Three healthy, adult, recreationally active volunteers (two male, one

female) were studied (height 179.3 ± 3.2 cm, mass 79.7 ± 16.8 kg, means ± s.d.). A sample size

of three was deemed sufficient, since the aim of the study was to elucidate major patterns, for

broad comparative purposes [21,60,65–67]. The subjects walked and ran barefoot along a

split-belt instrumented treadmill that recorded three-dimensional GRFs at 1 kHz (Bertec Lim-

ited, Columbus, Ohio, USA). The speed of the treadmill was controlled via external computer

software. Each subject undertook a number of walking and running trials at speed increments

of 0.25 m s-1, ranging from slow walking to fast running speeds. Subjects were also tested twice

at their (predetermined) walk-run transition speed, in one trial using walking, and in the other

using running [43].

Data processing. Although both belts of the instrumented treadmill recorded GRFs,

only the GRFs of the right footfalls for each trial were extracted for further processing. The

instances of foot touchdown and liftoff for each footfall were determined from the raw force

data. The force data for each footfall was then filtered with a fourth-order, zero-lag Butter-

worth low-pass filter, with cutoff frequencies largely between 15–25 Hz. The instances of

touchdown and liftoff also enabled the determination of tstance, β and S, the latter calculated as

S ¼ v � tstride; ð4Þ

where tstride is the stride duration. As for the birds, v, tstance and S were normalized using Eqs

(1–3), where each subject’s h was determined from standard anthropometry [68], based on the

subject’s total standing height.

GRF analysis

For each bird and human trial, the processed 3-D GRF profile was analyzed in a custom

MATLAB script to examine its more salient aspects. This determined the following parame-

ters: the magnitude of peak net GRF; the magnitude of peak vertical, anteroposterior (positive

and negative) and mediolateral components of the GRF; the timing of these peaks; the mean

magnitude of the vertical component of the GRF over the stance; the magnitude of the GRF

and its components at midstance; and the magnitude of the vertical force when the anteropos-

terior force was zero (i.e., the magnitude of the vertical force when the GRF was vertical in the

sagittal plane). Additionally, the GRF was used to investigate fluctuations of kinetic and poten-

tial energy (KE and PE, respectively) of the whole-body COM. Usually, the GRFs from an

entire stride (or integral number of strides) are required to examine patterns of mechanical

energy fluctuation, through single and double integrations of the force-time profiles

[37,46,47,69,70]. However, as β was known, this was able to be achieved by superimposing the

recorded single-footfall GRF profile onto itself (with an appropriate temporal offset) to simu-

late the total, whole-stride GRF profile experienced throughout the course of a whole stride

(see S1 Appendix for full details).

Once KE and PE were calculated across the entire stride, an assessment of their fluctuation

relative to each other was made, by calculating percent congruity [71]. This is a measure of

how often PE and KE fluctuate in phase; that is, how often the slopes of the KE-time and PE-

time curves have the same sign. In pure vaulting mechanics, percent congruity is 0%, and in

pure bouncing mechanics percent congruity is 100%. In addition to percent congruity, the net

vertical displacement (NVD) of the COM was determined, calculated as the difference between
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the maximum and minimum values of the instantaneous vertical displacement of the whole-

body COM. When normalized to hip height, NVD therefore expresses how much the COM

moves up and down throughout the stride.

As a key objective of this study is prediction of the GRF, the force-time profile of each of

the three components of the GRF (normalized to body weight and stance duration) were also

subjected to Fourier analysis to determine the corresponding Fourier series, implemented in a

custom MATLAB script. A Fourier series is a summation of first-order sine and cosine terms

of increasing frequency,

f ðtÞ ¼ a0 þ
X1

n¼1

ðansinðpntÞ þ bncosðpntÞÞ; ð5Þ

where the pronumeral n refers to the fundamental frequencies (1 Hz, 2 Hz, 3 Hz, 4 Hz,. . .).

Given enough terms (high enough n), the coefficients an and bn of a Fourier series can replicate

the shape of any waveform. Thus, Fourier series are an attractive means of concisely describing

the entire shape of a force profile (see also [72,73]), effectively obviating the need to measure

individual quantities such as peak vertical force.

Prior to the analyses outlined above, the vertical component of the GRF profile was cor-

rected for dynamic inconsistency between it and measured kinematics for each trial. The logic

behind this is outlined as follows. In an ideal situation of steady-state locomotion, over an inte-

gral number of strides the net change in vertical position of the COM is zero, as is the net

change in vertical velocity and vertical momentum. For vertical momentum to exhibit no net

change across an integral number of strides, this means, by the law of conservation of momen-

tum, that the net vertical impulse is zero; so for a biped,

2Iz ¼ Iw: ð6Þ

That is, the upward impulse from the foot contacting the forceplate, Iz, should theoretically

equal half of the downward impulse of the body’s weight over the stride, Iw, or equivalently,

the impulse of the body’s weight over half the stride [74]. This is equivalent to stating that the

mean vertical force exerted by the feet over one stride is equal and opposite to body weight

[75,76]. However, this is not always the case, because of errors in measurement of mass, stance

duration, duty factor or force, which lead to dynamic inconsistency in measured kinematics

and kinetics. There may also be unevenness in the distribution of body weight across the two

feet, although this is assumed to be negligible here as the trials studied are of straight line loco-

motion (but see [45], where asymmetric force production was reported). Akin to residual

reduction analysis [77], the dynamic inconsistency can be remedied by adjusting the vertical

component of the GRF to match the expected impulse. The simplest means of achieving this is

a linear (proportional) scaling of the magnitude of the force at each time instance,

FzðadjustedÞ ¼ a � Fz: ð7Þ

The adjustment factor α is the ratio of half of the body weight impulse to the impulse of the

recorded Fz:

a ¼
m � g � tstance

2b �
R tstance

0
FZdt

; ð8Þ

where m is body mass. The closer the value of α is to unity the greater dynamic consistency

exists between recorded kinematics and kinetics. Moreover, as it is assumed that asymmetry in

force distribution across the feet is negligible, the adjustment is only applied to the vertical

component of the GRF.
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Statistical analyses

All analyses were conducted in R 3.2.2 [78], PAST [79] or MATLAB. As the primary objective

of this study was to predict locomotor kinematics and kinetics based on body size and speed,

two main sets of statistical analysis were conducted. Firstly, allometric relationships between

the morphometric variables of total leg length L, hip height h and body mass m were investi-

gated in the birds. In this study, all kinematic and kinetic parameters were normalized by

either h or m, as is typical in comparative biomechanical studies. However, neither variable is

known for an extinct theropod, but they can be estimated. Hip height is often estimated from

fossil footprints (e.g., [80,81], but see below), although it is very difficult to definitively associ-

ate a set of footprints with a particular species. Body mass can be estimated in several ways

(e.g., [82–87]), although estimates can have considerable margins of error. One variable that

can be measured directly from an extinct theropod’s skeleton is L (minus articular cartilage,

which normally does not fossilize). Hence, ascertaining the relationships between L, h and m
can be useful for predicting morphometrics in extinct theropods. In addition to direct compar-

isons between these three variables, a fourth derived variable was also investigated, this being a

dimensionless measure of the ‘degree of crouch’, which was defined as

DC ¼ 1 �
h
L
: ð9Þ

Thus, a bird that stands with a more erect limb posture will have a lower DC value.

The second set of statistical analyses examined the effect of speed on kinematic and kinetic

parameters, the latter including features directly measurable from the GRF force-time profiles,

as well as Fourier coefficients and measures of mechanical energy fluctuation (detailed above).

As the central aim of this study was prediction, ordinary least squares regressions were used

throughout [88], unless otherwise specified. Moreover, given this objective, it was imperative

to maximize the generality of the predictive equations derived, even if this entailed sacrificing

some fine-scale accuracy concerning the effects of body mass or phylogeny.

Three types of predictive equation were considered for each variable: a linear fit (y = Ax +

B), a simple power fit (y = AxB, herein referred to as ‘power I’) and a vertically translated

power fit (y = AxB + C, herein referred to as ‘power II’). In the determination of the power II

fits, the value for C was fixed for each species, taken as the value of C when a power II fit was

applied to the pooled data for all species. By restricting the number of unknown coefficients to

two (A and B), this eliminates the potential for spurious results in nonlinear regression, result-

ing from multiple local minima in the sum of squared residuals (see [89]). Which particular

type of fit best explained the data for a given variable relied primarily on the Akaike Informa-

tion Criterion, applying a majority-rules consensus over the 12 species. The influence of phy-

logeny and body mass on the values of A and B were analysed using phylogenetic generalized

least squares regressions using the ‘caper’ package in R [90], and these were taken into account

when plausible (given the objective of maximizing generality). For phylogenetic analyses, a

composite phylogeny of birds based on recent studies was used, and branch lengths were set as

time since divergence (see S1 Appendix). For all statistical analyses, the significance level was

set to P = 0.05.

The predictive equations concerning morphometrics, kinematics and Fourier coefficients

derived using the above statistical analyses are herein collectively referred to as the biomechan-

ically informative, regression-derived statistical model, or BIRDS Model for short. An imple-

mentation of the BIRDS Model in MATAB code is provided in the Supporting Information.

The validity of the BIRDS Model was assessed by comparing its predictions against the original

data, determining its internal consistency with respect to kinematic variables, and ascertaining
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its efficacy in extrapolation beyond the body mass range of the species studied (see S1

Appendix).

Results

A total of 26 variables were found to vary significantly with increasing speed in birds. Not one

of these concerned the mediolateral component of the GRF, Fy. All variables that changed with

increasing speed in birds were found to do so in a continuous manner. In contrast, all but one

of these variables changed discontinuously with speed in humans, at the walk-run transition.

Of the 52 equation parameters (26 pairs of A and B) used to describe how variables scaled with

speed in birds, as detailed below, only nine of them (17.3%) showed a significant influence of

phylogeny. Moreover, for these variables the K statistic never exceeded 1.2, indicating minor

phylogenetic influence on these variables. Additionally, body mass did not show a significant

influence of phylogeny, according to the K statistic of Blomberg et al. [91] (K = 0.168,

P = 0.429).

Morphometric relationships

Hip height and leg length scaled tightly with each other and body mass in the birds studied

(Fig 1A–1C; Table 2). Yet, the fitted equation for hip height versus leg length is apparently

inappropriate for extrapolation to large body sizes: a Tyrannosaurus with a total leg length of

Fig 1. Morphometric scaling observed in the birds investigated in the current study. (A) Hip height versus leg length. (B) Hip height versus body mass. (C) Length

versus body mass. (D) Degree of crouch versus leg length; stick figure representations show the range of crouched (e.g., quail) to erect (e.g., ostrich) postures exhibited by

birds. (E) Degree of crouch versus body mass. All comparisons are plotted on logarithmic scales. Note that in (A)–(C), the line of best fit was determined by applying a

power I fit on the untransformed variables, rather than applying a linear fit to the log-transformed values. This helped produce better results for the upper end of the body

mass spectrum. Regression equations are reported in Table 2.

https://doi.org/10.1371/journal.pone.0192172.g001
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3.1 m would be predicted to have a standing hip height of 3.11 m, which is implausible. This

error may stem from a bias in the underlying data (no species> 100 kg in mass) or alterna-

tively differences in limb anatomy, such as different limb segment proportions [92].

An alternative estimation of hip height is based on the fact that larger parasagittal animals

stand with more erect (less crouched) postures [21,51], which is also borne out in the current

study. In the birds studied here, the degree of crouch decreased predictably, and asymptoti-

cally, with increases in both leg length and body mass (Fig 1D and 1E; Table 2), despite marked

differences in limb proportions between species. As leg length is known with certainty, degree

of crouch may be reliably estimated from this, and subsequently standing hip height, as

h ¼ Lð1 � DCÞ: ð10Þ

For a Tyrannosaurus with L = 3.1 m, h is predicted to be 2.99 m, a more plausible estimate

that would necessitate a limb segment to be inclined on average 15.3˚ from the vertical. It

needs to be emphasized that these estimations concern the height of the hip during standing.
Standing hip height would almost certainly be different from hip height at a given instant of

the stance phase of locomotion, particularly during bouncing kinematics when the leg would

undergo appreciable compression [10,46,75]. As such, the above method of estimation should

not be used as an explicit starting point for reconstructing limb poses throughout the stride

cycle.

Influence of speed on kinematic variables

In birds, both β and tstance
� decreased with increasing v� in a curvilinear fashion, and in the

case of tstance
�, a significant influence of body mass was detected (Fig 2, Table 3). These vari-

ables also decreased with increasing v� in humans, but with a marked discontinuity at the

walk-run transition (Fig 2). Relative stride length in birds increased with speed in a linear fash-

ion, with the nature of the relationship modulated by body mass (Fig 2, Table 3). A similar lin-

ear increase was also present in humans. Although no prominent discontinuity is immediately

apparent at the walk-run transition, a test of the major axis (MA) lines of best fit for the walk-

ing and running data points did reveal a significant difference in the line elevations (Fig 2F;

P< 0.0001), as calculated using the ‘smatr’ package in R [93].

Influence of speed on the GRF

The effect of speed on various features of the GRF profile in birds is reported in Table 3 and Figs

3–7; the results for humans are also reported in Figs 3–7. Both the positive (Fx,peak
+) and negative

(Fx,peak
–) peak magnitudes of the anteroposterior component of the GRF increased linearly with

increasing v� (Fig 3A–3D), as did the peak and mean magnitudes of vertical component over the

Table 2. Relationships between morphometric variables in the birds studied.

Relationship Equation r2

hip height versus leg length h = 0.9158�L1.0794 0.98

hip height versus body mass h = 0.2168�m0.3883 0.99

leg length versus body mass L = 0.2657�m0.3570 0.99

degree of crouch versus leg length log10DC = -0.6306�log10L – 1.1332 0.72

degree of crouch versus body mass log10DC = -0.2363�log10m – 0.7615 0.72

Note that as the objective of the current study is prediction, the power equations were fit as power equations (not as

allometry equations). Consequently, 95% confidence intervals for equation coefficients cannot be generated here.

https://doi.org/10.1371/journal.pone.0192172.t002
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stance (Fz,peak and Fz,mean, respectively; Fig 3E–3H) and the net GRF (Fnet,peak; Fig 3I and 3J). For

each variable a similar pattern of increase was also observed in the humans, but a distinct disconti-

nuity at the walk-run transition was ubiquitous.

The timing of the positive and negative peak magnitudes of the anteroposterior component

of the GRF, t(Fx,peak
+) and t(Fx,peak

–) respectively, both decreased slightly with increasing v�,
that is, they occured earlier in the stance as speed increased (Fig 4A–4D), although there was a

great amount of scatter. Humans showed a distinct discontinuity at the walk-run transition in

Fig 2. Speed scaling of kinematic variables in birds and humans. (A, B) Duty factor; horizontal dashed lines at β = 0.5 mark the transition from

grounded to aerial locomotion. (C, D) Relative stance duration. (E, F) relative stride length. (A), (C) and (E) are for birds, (B), (D) and (F) are for

humans. In (C) and (E), the relationship with speed varies with body mass, and so this has been demonstrated with several different masses. In (F),

major axis fits for both walking and running have been applied; they have significantly different elevations. Regression equations are reported in Table 3.

https://doi.org/10.1371/journal.pone.0192172.g002
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both of these features. Importantly, t(Fx,peak
+) for humans tended to occur later in the stance

compared to birds (0.7–0.9 versus 0.45–0.8; t-test: t = 20.046, P<0.0001), and in a running

gait, t(Fx,peak
–) for humans tended to be higher than for birds (0.2–0.3 versus 0.05–0.25; t-test:

t = 14.196, P< 0.0001). That is, at faster speeds, the instances of Fx,peak
+ and Fx,peak

−tended to

occur earlier on in the stance phase in birds than humans.

The instant at which the anteroposterior component of the GRF is zero, t(Fx = 0), is the

instant at which the GRF is vertical in the sagittal plane. The value of t(Fx = 0) gradually

decreased with increasing v� in birds in a gently curvilinear fashion, and body mass modulated

this relationship slightly (Fig 4E). In humans t(Fx = 0) also decreased gradually with increasing

v�. Although the MA lines of best fit for walking and running in humans had significantly

Table 3. Speed scaling of kinematic and kinetic variables in birds. The relationships identified between each variable and speed is of one of three forms: y = Ax + B (lin-

ear), y = AxB (power I) or y = AxB + C (power II). The relationship may also be modulated by mass, as indicated by the numbers in brackets. For each relationship, the r2

values are reported, as well as the K statistic of Blomberg et al. [91] and associated P-value for both coefficients A and B. Values in italics are statistically significant.

Variable Fit type A B C r2 KA KB PA PB

β power I1 0.5278 -0.3651 n/a 0.79 0.0292 0.1438 0.834 0.439

tstance
� power I [1] [2] n/a 0.93 1.0556 0.2989 0.003 0.158

S� linear [3] [4] n/a 0.92 0.0857 0.742 0.522 0.015
Fx,peak

+ linear1 0.0862 0.1341 n/a 0.23 0.0211 0.0305 0.895 0.813

Fx,peak
– linear1 -0.1686 -0.1550 n/a 0.30 0.0142 0.0169 0.976 0.917

Fz,peak linear1 0.8530 0.8848 n/a 0.72 0.9254 0.7404 0.013 0.046
Fz,mean linear1 0.3551 0.5775 n/a 0.79 0.148 0.3032 0.379 0.26

Fnet,peak linear1 0.7979 0.8684 n/a 0.77 0.6369 0.7426 0.097 0.055

t(Fx,peak
+) power I1 0.6675 -0.1011 n/a 0.16 0.0207 0.0409 0.864 0.758

t(Fx,peak
–) linear1 -0.0123 0.1794 n/a 0.01 0.4129 0.6723 0.179 0.41

t(Fx = 0) power I3 [5] -0.0705 n/a 0.34 0.0376 0.0418 0.839 0.746

Fz(Fx = 0) linear2 1.0326 0.5055 n/a 0.67 0.8911 0.778 0.04 0.037

Fx,MS linear1 0.0821 0.0099 n/a 0.28 0.0151 0.0174 0.962 0.856

Fz,MS linear2 0.8300 0.5230 n/a 0.58 0.315 0.845 0.232 0.007
Fnet,MS linear2 0.8407 0.5234 n/a 0.60 0.2794 0.5748 0.283 0.036
Xa2 power II1 -0.0082 3.0997 -0.165 0.28 0.0188 0.2893 0.939 0.358

Xa3 linear1 -0.0593 -0.0289 n/a 0.25 0.0187 0.0202 0.921 0.879

Xa4 linear1 -0.0044 -0.0275 n/a -0.02 1.0881 0.0224 0.002 0.918

Xa5 linear1 -0.0008 -0.0327 n/a 0.0001 0.2117 0.0301 0.318 0.847

Za1 linear1 0.5897 0.8725 n/a 0.74 0.2393 0.348 0.234 0.207

Za2 power II1 0.8899 0.4370 -0.532 0.17 0.3202 0.2308 0.211 0.501

Za3 linear2 -0.2162 0.3127 n/a -0.08 0.8603 0.3537 0.026 0.159

Za4 linear1 -0.0693 0.1401 n/a 0.64 0.5474 0.145 0.136 0.493

Za5 linear1 0.0033 -0.0456 n/a 0.001 0.1175 0.4454 0.461 0.083

Za6 linear1 -0.0264 0.0225 n/a 0.16 0.0938 0.3557 0.588 0.208

NVD� power I1 0.0560 0.4764 n/a 0.28 0.0991 0.0298 0.558 0.835

[1] = -0.1841�log10m + 1.4265

[2] = -0.0725�log10m – 0.8266

[3] = -0.2226�log10m + 1.4957

[4] = -0.1058�log10m + 1.2004

[5] = 0.0391�log10m + 0.3939
1 = model is an all-species fit.
2 = A and B are means across species.
3 = B is a mean across species.

https://doi.org/10.1371/journal.pone.0192172.t003
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Fig 3. Speed scaling of peak force variables in birds and humans. Forces are normalized to body weight. (A, B) Positive peak

Fx. (C, D) Negative peak Fx. (E, F) Peak Fz. (G, H) Mean Fz. (I, J) Peak net force. (A), (C), (E), (G) and (I) are for birds, (B), (D),

(F), (H) and (J) are for humans. Regression equations for birds are reported in Table 3.

https://doi.org/10.1371/journal.pone.0192172.g003
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Fig 4. Speed scaling of temporal variables concerning the GRF in birds and humans. Times are normalized to the duration of stance.

(A, B) Time of positive peak Fx. (C, D) Time of negative peak Fx. (E, F) Time at which Fx is zero. (G, H) The magnitude of Fz when Fx is

zero. (A), (C), (E) and (G) are for birds, (B), (D), (F) and (H) are for humans. In (E), the relationship with speed varies with body mass,

and so this has been demonstrated with several different masses. In (F), major axis fits for both walking and running have been applied;

they have the same elevation at the walk-run transition. Regression equations for birds are reported in Table 3.

https://doi.org/10.1371/journal.pone.0192172.g004
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different slopes (P< 0.0001, calculated using the ‘smatr’ package), the two had similar eleva-

tions at the walk-run transition (Fig 4F). Thus, the transition from walking to running was not

abruptly discontinuous as observed for the other parameters investigated here. Importantly, t
(Fx = 0) was almost always less than 0.5 in birds, particularly in smaller species (i.e., event

occurred in the first half of stance), and was almost always greater than 0.5 in humans (i.e.,

event occurred in the second half of stance).

Fig 5. Speed scaling of the GRF at mid-stance. (A, B) The anteroposterior component at mid-stance. (C, D) The vertical component at mid-stance. (E, F) The

net GRF at mid-stance. (A), (C) and (E) are for birds, (B), (D) and (F) are for humans. Regression equations are reported in Table 3.

https://doi.org/10.1371/journal.pone.0192172.g005
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Fig 6. Speed scaling of Fourier coefficients describing the anteroposterior component of the GRF. (A, B) Xa2. (C, D) Xa3. (E, F) Xa4.

(G, H) Xa5. (A), (C), (E) and (G) are for birds, (B), (D), (F) and (H) are for humans. Regression equations are reported in Table 3.

https://doi.org/10.1371/journal.pone.0192172.g006
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Fig 7. Speed scaling of Fourier coefficients describing the vertical component of the GRF. (A, B) Za1. (C, D) Za2. (E, F) Za3. (G,

H) Za4. (I, J) Za5. (K, L) Za6. (A), (C), (E), (G), (I) and (K) are for birds, (B), (D), (F), (H), (J) and (L) are for humans. Regression

equations are reported in Table 3.

https://doi.org/10.1371/journal.pone.0192172.g007
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The magnitude of the vertical component of the GRF at this instance in the stance phase,

Fz(Fx = 0), increased linearly with increasing v� in birds (Fig 4G). In humans, Fz(Fx = 0)

decreased with increasing v� in walking, abruptly and substantially increased at the walk-run

transition, and then increased with increasing v� at running speeds (Fig 4H). The reason for

the decrease with v� during walking is seen in the fact that the force-time profile of Fz became

progressively more double-peaked at faster walking speeds (see below), with the trough

between the two peaks moving closer to the abscissa. As the trough occurs at around a similar

time to t(Fx = 0), the magnitude of Fz(Fx = 0) consequently decreased with increasing speed.

At mid-stance (i.e., the point when t = 0.5tstance), the magnitudes of the anteroposterior (Fx,

MS) and vertical (Fz,MS) components of the GRF, as well as the net magnitude (Fnet,MS), all

increased linearly with increasing v� in birds (Fig 5). In humans, Fx,MS increased with increas-

ing v� in walking and decreased with increasing v� in running, the two separated by a disconti-

nuity. As a consequence of the difference in t(Fx = 0) between humans and birds, and the fact

that t(Fx = 0) is relatively close to 0.5 in humans, Fz,MS and Fnet,MS in humans followed a similar

pattern as observed for Fz(Fx = 0). Furthermore, that t(Fx = 0) was almost always less than 0.5

in birds means that Fx,MS was almost always positive (Fig 5A), whereas in humans it was almost

always negative (Fig 5B).

Power analysis of the Fourier coefficients for all three components of the GRF revealed that

the relative magnitude of the power of the cosine and sine terms (= bn2/an2) was always less

than 0.7%. That is, the relative contribution of the cosine terms to the explanatory power of

the Fourier series is negligible; the force-time profiles could be sufficiently described using

only sine (a) terms. Additionally, power analysis revealed that 9.34 ± 4.18 (mean ± s.d.) funda-

mental frequencies contain 99% or more of the signal’s power in terms of Fx, 11.58 ± 7.13 fun-

damental frequencies contain 99% or more of the signal’s power in terms of Fy, and that

3.20 ± 1.04 fundamental frequencies contain 99% or more of the signal’s power in terms of Fz.
These results indicate that, by and large, 99% (or more) of the force-time profile was able be

explained by the first ten or fewer fundamental frequencies.

Four sine-based Fourier coefficients for describing the force-time profile of Fx were found

to be significantly different from zero and varied significantly with increasing v�. These relate

to the frequencies of 2–5 Hz, and are herein referred to as Xa2, Xa3, Xa4 and Xa5. Hence, the Fx
force-time profile can be described thus:

FxðtÞ ¼
X5

n¼2

XansinðpntÞ; ð11Þ

where Fx and t are normalized to body weight and stance duration, respectively. In birds the

value of Xa2 decreased with increasing v� in a curvilinear fashion, whereas it decreased linearly

in humans, with a small discontinuity occurring at the walk-run transition (Fig 6A and 6B).

The value of Xa3 and Xa4 decreased continuously with increasing v� in birds, although only

gradually in the case of Xa4. The values for both coefficients tended to be negative for birds,

whereas in humans Xa3 and Xa4 at running speeds tended to be positive (Fig 6C–6F). More-

over, marked discontinuities occurred at the walk-run transition for both coefficients in

humans. Xa5 in birds increased very slightly with increasing v�, but remained largely negative,

whereas in humans it was largely positive across walking and running (Fig 6G and 6H).

Humans again showed a discontinuity with speed in this variable at the walk-run transition,

although intriguingly in one subject (subject S3) the discontinuity was more pronounced than

in the other two (Fig 6H).

Six sine-based Fourier coefficients for describing the force-time profile of Fz were found to

be significantly different from zero and varied significantly with increasing v�. These relate to
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the frequencies of 1–6 Hz, and are herein referred to as Za1, Za2, Za3, Za4, Za5 and Za6. Hence,

the Fz force-time profile can be described thus:

FzðtÞ ¼
X6

n¼1

ZansinðpntÞ; ð12Þ

where Fz and t are normalized to body weight and stance duration, respectively. In birds the

value of Za1 and Za3–Za6 changed with increasing v� in a linear fashion, whereas the value of

Za2 changed in a slight curvilinear fashion with respect to v� (Fig 7). In humans each of these

variables changed with increasing v in a discontinuous fashion, with marked changes in values

occurring at the walk-run transition. The pattern of change was not always congruent between

bird and humans; for instance, Za4 decreased with increasing v� in birds, but within both walk-

ing and running gaits in humans it increased with increasing v� (Fig 7G and 7H).

Using the relationships identified between each of the Fourier coefficients and v� in birds,

the shape of the Fx and Fz force-time profiles can be calculated with the equations for Fx(t) and

Fz(t) respectively (Fig 8A). Not surprisingly, the shapes of the force-time profiles change con-

tinuously with increasing v�, as all of the Fourier coefficients also change continuously with v�.
The most important changes occur to the Fz profile. At slow speeds the Fz profile was double-

peaked; at very slow speeds the second peak was larger than the first, but as v� increased, the

first peak became more prominent and the second peak atrophied. This continued with faster

speeds until the second peak vanished completely, leaving an asymmetric profile. For compari-

son, the Fx and Fz force-time profiles were also calculated for humans (Fig 8B), and they

showed a marked change in shape at the walk-run transition, at relative speeds of 0.6–0.7. At

slow walking the Fz profile was double-peaked, and became progressively more double-peaked

as walking speed increased. At the transition to running, the double peaks were replaced by a

single, nearly symmetrical peak which was retained as v� increased further, although the pres-

ence of an initial impact transient became more prominent at higher speeds. These patterns

for humans are entirely consistent with those reported by previous studies [72,94–103].

Influence of speed on mechanical energy fluctuations

Percent congruity of KE and PE, as calculated from simulations of whole-stride GRFs, showed

an intriguing pattern in birds (Fig 9A). At the slowest speeds recorded, it could take on a range

of values up to 70%, but in general was considerably less than that. It increased continuously

from low values toward high values as v� increased, reaching a maximum (almost 100% in

some trials) at relative speeds of about v� � 1. However, beyond v� � 1, it decreased again with

further increase in v�, albeit at a lessened rate. The inflection at v� � 1 may therefore be seen,

at face value, to be a discontinuity with respect to speed. A similar pattern has also been

reported in birds for other, analogous measures of mechanical energy fluctuations, namely,

phase shift and pendular energy recovery [28,36,37,46]. The pattern of percent congruity

change with increasing v� in humans was markedly different to that seen in birds (Fig 9B). In

walking it actually decreased with increasing speed before suddenly increasing again at the

walk-run transition; whereupon it remained at a fairly constant value of 50–60%.

The normalized net vertical displacement (NVD�) for birds had a considerable amount of

scatter, but nevertheless increased with increasing v�, being best fit by a power I relationship

(Fig 9C). The variance with respect to v� was more tightly constrained in humans, and NVD�

also increased with increasing v�, although again a marked discontinuity occurred at the walk-

run transition (Fig 9D). It also appears that at the fastest speeds tested for humans, NVD may

decrease somewhat. Although the analysis of GRFs in this study explicitly assumed equal force

distribution by both feet during locomotion, this may not always be the case, for small birds at
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Fig 8. Change in the shape of the GRF force-time profiles with increasing speed. (A) Pattern of change observed in birds.

(B) Pattern of change observed in humans. Red profile is vertical component, blue profile is anteroposterior component.

Among other things, note how the profiles for birds show marked temporal asymmetry compared to those of humans, with

more force being applied in the first half of stance. For humans, force-time profiles were calculated from least squares linear

fits applied to the respective data, with the exception of Za2 for walking, which was better fit by a power II model. The

predicted curves for both components are based on the first ten sine coefficients (i.e., Xa1–Xa10, Za1–Za10), all of which

either showed significant variation with speed or significantly non-zero values (or both).

https://doi.org/10.1371/journal.pone.0192172.g008
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least [45]. If some of the species examined in the present study used ‘mixed gaits’ at certain

speeds [45], this may exaggerate the variation in calculated values for percent congruity and

NVD� reported here.

Other important features

Unsurprisingly, the vertical force was by far the dominant component of the GRF in birds, as

seen by the fact that Fz,peak scaled very strongly linearly with Fnet,peak, very close to the line of

parity (Fig 10A; MA regression forced through the origin has a slope of 1.0118, r2 = 0.995).

Additionally, across the 701 trials analyzed, the peak magnitude of Fx and Fy was on average

21.15 ± 11.46% and 9.83 ± 6.97% of Fz,peak, respectively. The instance of Fz,peak, t(Fz,peak) was

very strongly associated with the instance of Fnet,peak, t(Fnet,peak) (Fig 10B; MA regression

forced through the origin has a slope of 0.99518, r2 = 0.993).

In birds, t(Fz,peak) and t(Fnet,peak) appeared to be weakly coincident with t(Fx = 0) (Fig 11A

and 11C). This was not the case in humans, where no correlation existed at all (Fig 11B and

11D). To formally test for a correlation between t(Fz,peak) or t(Fnet,peak) with t(Fx = 0) in birds,

this would usually involve computation of a linear regression and an associated significance

value, based on a parametric statistical test. This could not be done in the current situation,

however, for the data were found to fail two assumptions of standard parametric tests of the

slope, as determined in PAST, namely, non-normal distribution of errors and

Fig 9. Speed scaling of mechanical energy fluctuations. (A, B) percent congruity, distinguished by duty factor. (C, D) normalized net vertical displacement of the COM.

(A) and (C) are for birds, (B) and (D) are for humans. Regression equation for (C) is reported in Table 3.

https://doi.org/10.1371/journal.pone.0192172.g009
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heteroscedasticity (using the Breusch-Pagan test). Instead, a permutation test was used [104],

implemented in a custom MATLAB script. For both t(Fz,peak) versus t(Fx = 0) and t(Fnet,peak)

versus t(Fx = 0), the least-squares slope was determined; the values of t(Fz,peak) or t(Fnet,peak)

were then randomly rearranged with respect to t(Fx = 0) and the slope recomputed. A total of

100,000 replicates were conducted for both data tests. The significance (P-value) of the slope is

the proportion of replicates for which the calculated slope is equal to or more extreme than the

actual slope of the data. In both cases, this revealed the slope to be significant (P< 0.0001).

Despite this, the r2 values in both cases were rather poor, with less than 13% of the variation

explained by t(Fx = 0): there was only a weak association between t(Fz,peak) or t(Fnet,peak) with t
(Fx = 0). Therefore, in both birds and humans, the instant of peak vertical force or peak net

GRF was not necessarily associated with the instant at which the GRF vector is vertical in the

sagittal plane. Consequently, whilst Fz(Fx = 0) could be equal or very close to Fz,peak (or Fnet,

peak), it was almost always less than that, and often significantly so (Fig 11E and 11F).

Fig 10. The dominance of the vertical component of the GRF. (A) Peak net force scales very strongly with peak

vertical force; major axis line has a slope almost exactly equal to unity. (B) The instance of peak net force is very

strongly coincident with the instance of peak vertical force; major axis line has a slope almost exactly equal to unity. In

B, the outliers (hollow circles) are slow speed trials in which the two peaks were of almost the same magnitude, such

that the peak net force can occur at a very different time to when the vertical component is at a maximum (inset

illustrates one such trial).

https://doi.org/10.1371/journal.pone.0192172.g010
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Fig 11. The association, or lack thereof, between t(Fz,peak) or t(Fnet,peak) and t(Fx = 0). (A, B) t(Fz,peak) versus t(Fx = 0). (C, D) t(Fnet,peak) versus t(Fx = 0). (E, F)

Fz(Fx = 0) compared to Fz,peak for each trial; the blue lines are lines of parity. (A), (C) and (E) are for birds, (B), (D) and (F) are for humans. In (A), the regression

line has a slope of 0.7718 and an r2 of 0.1289; in (C), the regression line has a slope of 0.7627 and an r2 of 0.1194. In human walking, peak vertical or net force

either occurs early or late in the stance; in running, they occur largely before mid-stance (t< 0.5), yet t(Fx = 0) largely occurs after mid-stance (t> 0.5).

https://doi.org/10.1371/journal.pone.0192172.g011

Avian terrestrial locomotor biomechanics

PLOS ONE | https://doi.org/10.1371/journal.pone.0192172 February 21, 2018 23 / 40

https://doi.org/10.1371/journal.pone.0192172.g011
https://doi.org/10.1371/journal.pone.0192172


A comparison of Fx,peak
−against Fx,peak

+ in birds revealed that the data points almost always

fell below the line of (negative) parity (Fig 12A); that is, |Fx,peak
–| was almost always greater

than Fx,peak
+ (paired t-test: t = 21.727, P< 0.0001). This is a consequence of the fact that t(Fx =

0) was almost always substantially less than 0.5 in birds (see above). In order for the decelera-

tion (negative Fx) phase of the stance to be shorter in duration than the acceleration (positive

Fx) phase, and yet impulses remain approximately balanced, this requires the deceleration

component to reach a greater peak value (Fig 12A inset). In contrast to the birds, |Fx,peak
–| in

humans was not significantly different from Fx,peak
+ (paired t-test: t = 1.125, P = 0.262); a

graphical comparison of Fx,peak
−against Fx,peak

+ shows the data points to neatly fall along the

line of (negative) parity (Fig 12B).

BIRDS model validation tests

The full results of model validation are detailed in the Supporting Information (S1 Appendix),

and they will only be summarized here. Overall, the BIRDS Model performed well, explaining

Fig 12. A comparison of peak positive and negative magnitudes of the anteroposterior component of the

GRF. (A) Fx,peak
−versus Fx,peak

+ in birds; the vast majority of data points fall below the line of negative parity. (B)

Fx,peak
−versus Fx,peak

+ in humans; the data points fall neatly on the line of negative parity. In (A), the inset shows

how differing durations of deceleration and acceleration phases require different peak magnitudes, in order for

impulses (shaded area) to remain balanced.

https://doi.org/10.1371/journal.pone.0192172.g012
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five-sixths of the variation in the observed vertical component of the GRF and over two-thirds

of the variation in the observed anteroposterior component. It also predicted individual

aspects of the GRF profiles with good accuracy, in some instances out-performing the predic-

tive equations derived individually and specifically for each variable. In terms of kinematic

predictions, the model was shown to have considerable internal consistency. Extrapolation

tests showed that the model’s predictions contained only a small amount of error, about 3% or

less, suggesting that it is capable of making extrapolations within the margin of error of other

biomechanical parameters that would be estimated for an extinct species, such as body mass or

COM location [34,82,84,105].

One other important result concerns the BIRDS Model’s predictions of mechanical energy

fluctuations. The predictions again were relatively good, replicating the general pattern of

change well (Fig 13). Regarding its predictions of change in percent congruity with increasing

v�, two features are of note (Fig 13A). Firstly, the apparent inflection in the data at v� � 1 was

predicted to be a gradual change, rather than an abrupt discontinuity as seen with most vari-

ables measured in humans. Secondly, the model predicted that at very slow speeds, percent

congruity increased, producing a U-shape to the initial part of the plot. A U-shape has also

been reported at slow speeds for phase shift and pendular energy recovery by other studies

[28,36,46], further supporting the model’s validity.

Discussion

Through investigating twelve species of ground-dwelling bird, spanning a 1,780-fold range in

body mass, this study sought to identify how speed and size modulates some basic parameters

of avian terrestrial locomotion, relating to kinematics and the ground reaction force (GRF).

Based on the relationships between speed or size and these parameters, equations were devel-

oped that may be used to help predict locomotion in extinct theropods. In addition, the com-

parison of locomotor biomechanics in birds to that for humans has further clarified the

similarities and differences between the two groups, building on the findings of previous stud-

ies (c.f. [21]).

Birds versushumans

Every variable that was found to vary with speed in birds did so continuously, whereas humans

typically showed an abrupt and pronounced change, coinciding with the walk-run transition.

This parallels the findings of previous studies, which have demonstrated that many kinematic

parameters that change abruptly with speed in humans do so in a continuous fashion in birds

[21,22,24,28,32,36–38,40,42,43,106,107]. In addition to applying across speeds, the continuous

patterns of birds also appear to hold within individual trials during acceleration or decelera-

tion; Fig 14 illustrates one such example, with an emu undergoing gradual deceleration from

v� 2.2 m s-1 to v� 1.0 m s-1.

The results for percent congruity in bird locomotion appeared to show a discontinuity with

respect to speed, occurring at v� � 1. However, simulations with the BIRDS Model showed

that a gradual change occurred here (Fig 13A). This suggests that the apparent discontinuity

observed can result from the summation and interaction of multiple continuous changes (in

force-time profile shape, duty factor and tstance) occurring together (Fig 15). Furthermore, per-

cent congruity increased continuously from low values at slow speeds (where vaulting-like

mechanics dominate) up to high values at v� � 1 (where bouncing-like mechanics dominate).

Duty factor typically remained above 0.5 across this speed range (Figs 2A and 9A), and hence

the transition from ‘walking’ to ‘grounded running’ in birds occurred within this range as well.

Indeed, much of the transition from ‘walking’ through to ‘aerial running’ took place over the
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speed range up to v� � 1. Therefore, the transition from ‘walking’ to ‘grounded running’

occurred gradually, without any abrupt change in the nature of mechanical energy fluctua-

tions. Only once ‘aerial running’ had been attained, and speed increased further, did the nature

of mechanical energy fluctuations change, and here its change with respect to speed was still

continuous. The cause for the gradual decrease in percent congruity with further increases in

speed beyond v� � 1 may relate to the fact that above this speed, the GRF force-time profile

changed much less (the Fz force-time profile was already single-peaked by the time v� � 1),

but duty factor continued to decrease with increasing speed (Fig 15).

It is worth briefly noting that percent congruity in this study was calculated based on simu-

lated whole-stride GRF patterns, which were generated under the assumption of symmetrical

force distribution between right and left limbs. However, it has been recently shown that this

may not always be the case [45]. If some or all of the birds investigated in the present study did

use ‘mixed gaits’ at certain speeds, this could influence estimations of mechanical energy

Fig 13. Comparison of predictions of the BIRDS model against the observed data for mechanical energy

fluctuations. (A) Percent congruity; r2 of predictions is 0.509, root mean square error (RMSE) is 14.895. (B) Relative

net vertical displacement of the COM; r2 of predictions is -3.569, RMSE is 0.0339. For both variables, the model

predicted an influence of body mass, although this is not particularly pronounced for the prediction of percent

congruity.

https://doi.org/10.1371/journal.pone.0192172.g013
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Fig 14. A trial of seven footfalls in which the subject (emu) underwent a gradual deceleration. Stride length, stance duration, duty factor and the

nature of the GRF (blue profile = Fx, red profile = Fz) change continuously with continuous decrease in speed. Note that speed is shown as the

instantaneous speed of the back marker.

https://doi.org/10.1371/journal.pone.0192172.g014
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fluctuations, perhaps explaining some of the variation in calculated percent congruity for rela-

tive speeds of 0.5–1 (Fig 9A). One outstanding issue is that all of the species studied by

Andrada et al. [45] and noted as exhibiting mixed gaits were less than 600 g in body mass.

Whether the phenomenon of mixed gaits is more widespread in birds, or just restricted to

small-bodied species, therefore remains unknown. An additional potential source of variation

in calculated values of percent congruity could be the use of head-bobbing by some or all of

the birds studied [108], although this was not quantified in the present study.

In terms of kinematics, forces and energy fluctuations of the COM, this and previous stud-

ies have ubiquitously demonstrated that ground-dwelling birds exhibit a smooth transition

from ‘walking’ to ‘aerial running’: they have a highly continuous locomotor repertoire. It is

therefore not possible to distinguish discrete gaits at intermediate speeds, as can be done for

humans and many other animals [109]. Hence, human-like walking and human-like running

may be seen as end-points of the spectrum of locomotor behaviour observed in avian terres-

trial locomotion.

Previously, Gatesy and Biewener [21] and Gatesy [22] identified a potential gait transition

in the bird species they studied. This was on the basis that for relative stride frequency, relative

step length and limb retraction angle, the rate of change with respect to speed was determined

to change significantly at the reported transition. As noted by Rubenson et al. [36], however,

Fig 15. Changes in the GRF, duty factor and mechanical energy fluctuations with increasing speed. The force-time profile shape and duty factor for several different

speeds have been diagrammatically mapped onto the comparison between percent congruity and speed. The predictions of the BIRDS Model for various body masses are

also shown. Note how the shapes of the force-time profiles change far less beyond v� � 1, yet duty factor continues to decrease.

https://doi.org/10.1371/journal.pone.0192172.g015
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the way in which these parameters change with speed could alternatively be, and perhaps bet-

ter, modelled by curvilinear relationships, rather than linear ones. In this case, no distinct tran-

sition would exist. Regardless of this discrepancy, the overwhelming majority of kinematic and

kinetic parameters measured in birds to date show continuous change with increasing speed.

In light of the above considerations, it is intriguing that two studies have observed pro-

nounced discontinuities in how energy expenditure (metabolic cost of transport) change with

increasing speed in large birds (emus and ostriches: [36,110]). These discontinuities were

found to occur at v� � 0.4–0.5, which is well within the region of continuous increase in per-

cent congruity as calculated here. However, no such discontinuity was observed in a much

smaller species (rock ptarmigan: [38]). The factor or factors responsible for these discontinui-

ties, and whether this only occurs in large birds, remain to be determined.

One further point of interest is that whilst this study investigated only adult humans, find-

ing many marked differences from birds, young children (< 5 years of age) may exhibit more

bird-like locomotor patterns. For instance, duty factor or the shape of the force-time profile of

the GRF may vary with speed in a more continuous fashion compared to adults [111]. It

remains to be discerned if this phenomenon is related to smaller body size at young age in

humans, or instead reflects the ontogenetic maturation of neuromuscular control of move-

ment, but is worthy of future investigation.

Predicting terrestrial locomotor biomechanics in theropods

The BIRDS Model developed here can be used to predict several fundamental variables involved

in striding bipedal locomotion: duty factor, stance duration, stride length and the nature of the

GRF in the sagittal plane throughout the stance. In turn, the nature of mechanical energy fluctu-

ations may be ascertained. All the model requires for these predictions are two inputs, mass and

speed, although if total leg length is also known this can refine the accuracy of the predictions.

These predictions have been shown to perform well over the range of masses, postures and

speeds studied. On average, the model can explain 79–93% of the observed variation in kine-

matics and 69–83% of the observed variation in GRFs. The model has also been shown to per-

form well in extrapolation to both higher and lower body masses. This instills confidence that it

can, to some degree, be used to estimate important biomechanical parameters involved in ter-

restrial locomotion for extinct theropods, both avian (e.g., moas, dromornithids, phorusrhacids)

and non-avian (e.g., Tyrannosaurus, Allosaurus, Australovenator, Velociraptor).
Returning to the initial question posed in the Introduction, what would an eight tonne

Tyrannosaurus have looked like moving at 5 m s-1? In its current form, the BIRDS Model pre-

dicts that a Tyrannosaurus of leg length 3.1 m and mass 8,000 kg, moving at 5 m s-1, would

have a duty factor of 0.54 (i.e., it is not airborne), a stance duration of 0.43 s and a stride length

of 4.08 m. The vertical component of the GRF would have a gently double-peaked force-time

profile, with a peak vertical force of about 117 kN (~1.5 body weights) experienced at 31% of

the stance. The whole-body COM movements would have been largely bouncing-like, with

percent congruity approximately 90%.

The question may be raised as to how viable it is to extrapolate from the bird species studied

here to extinct, non-avian theropods. Modern birds have a distinctly different musculoskeletal

anatomy from that of many extinct, non-avian theropods, in terms of limb segment propor-

tions [92,112,113], inferred relative size and positioning of muscular groups[114–116] and

inferred limb orientations and COM position [1,20,34,117,118]. Additionally, the absolute

range of body masses encompassed by modern birds is small compared to that encompassed

by extinct, non-avian theropods. Hence, whilst it may be reasonable to extrapolate to a 200 kg

moa, is it reasonable to extrapolate to an eight tonne tyrannosaur?
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Whilst there are many important anatomical differences between birds and extinct, non-

avian theropods, there are also many important similarities, due to homology. More funda-

mentally, in the context of terrestrial locomotion birds and non-avian theropods are (or were)

obligatory striding, parasagittal bipeds, and so share the same underlying biomechanical

requirements [21,46]. No further evidence for this is needed beyond humans. Humans and

birds differ considerably in anatomy and posture, and differ in many kinematic and kinetic

parameters, including how these parameters change with increasing speed. However, at slow

speeds of locomotion, they both employ high duty factors with long stance durations and short

stride lengths [21]; the anteroposterior component of the GRF comprises a negative-positive

couplet of equal and opposite impulses and the vertical component has two distinct peaks; and

the centre of mass moves in such a way that KE and PE oscillate largely out of phase [46]. At

fast speeds of locomotion, humans and birds both employ low duty factors with short stance

durations and long stride lengths [21]; the anteroposterior component of the GRF comprises a

negative-positive couplet of equal and opposite impulses and the vertical component has only

a single peak; and the centre of mass moves in such a way that KE and PE oscillate largely in

phase [46]. Thus, despite many anatomical and postural differences, humans and birds exhibit

gross biomechanical similarity, because they are both obligatory striding, parasagittal bipeds.

One further line of evidence supporting the use of birds in making inferences about non-avian

theropod locomotion is given by the results of Bishop et al. [43]. The findings of that study sug-

gest that most extinct, non-avian theropods may have had a continuous locomotor repertoire,

much like birds.

Anatomical differences aside, the concern about size differences is a legitimate one, and it is

difficult to ascertain a priori the extent to which extrapolations may be made within an accept-

able margin of error. Only through biomechanical modelling, using other data and constraints

as inputs, can the reasonableness of the BIRDS Model’s predictions at large body size be identi-

fied, and the model subsequently refined (see also below). It is also worth bearing in mind that

in relative terms, the range of body masses encompassed by the bird species studied is greater

than that between extant birds and extinct non-avian theropods: going from a 45 g painted

quail to an 80 kg ostrich is a 1,780-fold increase in mass, whereas going from an 80 kg ostrich

to an eight tonne Tyrannosaurus is only a 100-fold increase in mass. That is, a large part of the

relative increase in body mass across the range of theropods is actually covered in the present

study.

GRF asymmetry and the effect of COM location

A further notable difference between birds and humans observed in this study is the nature of

asymmetry in the GRF force-time profiles (Fig 7). Except at very slow speeds, the force-time

profile of Fz in birds exhibits ‘early-skew’, with the profile tending to be positively skewed

along the time axis, and the instance of Fz,peak usually occurring well before mid-stance. There

were comparatively few bird trials in which the instance of Fz,peak occurred within 0.4–0.6 of

tstance (20.5% of trials), across the entire range of speeds. The force-time profile of Fz in humans

was far more symmetrical, with the instance of Fz,peak occurring closer to mid-stance; in run-

ning, 87.4% of trials had Fz,peak occurring within 0.4–0.6 of tstance. Asymmetry in the Fz force-

time profile may be assessed by calculating the ratio of two Fourier coefficients, Za1 and Za2

[64,72,73]. Za1, of frequency 1 Hz, is the primary determinant of profile magnitude, whereas

Za2, of frequency 2 Hz, is the primary determinant of asymmetry, since it adds to one end of

the profile and subtracts away from the other end. The ratio Za2/Za1 is therefore a magnitude-

normalized measure of profile asymmetry (Fig 16A and 16B; [72]). Negative values of this

ratio cause the Fz force-time profile to be late-skewed (when the second peak is larger than the
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first), as is observed at low speeds; positive values cause the profile to be early-skewed. The

degree of asymmetry in the Fz force-time profile (equal to the absolute value of Za2/Za1) was

larger in birds than in humans at all speeds except in the small range of 0.25� v� � 0.4; above

v� = 1 it was considerably larger in birds.

Differences also existed between birds and humans in the asymmetry of the Fx force-time

profile. As described above, the Fx profile in birds was markedly asymmetric such that t(Fx =

0) was almost always less than 0.5, and often significantly so. In contrast, the Fx profile was less

asymmetric in humans, with t(Fx = 0) almost always greater than 0.5, but only by a small

amount (Fig 16C and 16D). Additionally, the instances of Fx,peak
+ and negative Fx,peak

−tended

to occur earlier in the stance in birds compared to humans (Figs 4A–4D, 16C and 16D).

The above differences in force-time profile asymmetry between birds and humans possibly

reflect differences in the location of the COM relative to the hips. In all bird species studied

here, and indeed the majority of extant birds, the COM is considerably anterior to the hip,

whereas in humans it is much closer to the hip. This difference was recently proposed by

Andrada et al. [119] to be one possible factor responsible for the distinct early-skew observed in

the vertical component of the GRF, and has been supported by the experimental findings of Cle-

mente et al. [64]. A theoretical model developed by Andrada and coworkers [119], when input-

ted with realistic anatomical and gait data, including COM location, can simulate early-skewed

Fz force-time profiles reasonably well; however, their model did not predict the late-skewed Fz
profiles that were observed at very slow speeds in the present study. Although COM location

may influence vertical force-time profile asymmetry, other factors may also contribute, such as

intrinsic limb dampening [61] or hip torque-driven limb propulsion [119]. The relative impor-

tance of each factor, and whether this changes with body size or speed, requires future study.

The difference in the Fx force-time profile asymmetry between birds and humans may also

be potentially reconciled with COM location. In the absence of any moments applied at the

feet and about the mediolateral or anteroposterior axes, Newton’s second and third laws dic-

tate that the GRF vector must track the instantaneous location of the whole-body COM

throughout the stance phase. Thus, at a given point in the stance, the GRF vector will be more

anteriorly oriented in a biped with a more anteriorly located COM, compared to a biped with

a more posteriorly located COM (Fig 16E and 16F). As such, the instance of Fx = 0 will occur

earlier in the stance phase for the biped with the anteriorly located COM. In other words, in a

biped with a more anteriorly located COM, the COM will pass over the centre of pressure of

the foot earlier on in the stance phase, such that the GRF vector will be vertical in the sagittal

plane earlier on.

The effect of body mass

The observations reported here, in concert with those reported previously [21,24,36,37], dem-

onstrate that body mass potentially modulates the relationship between at least three impor-

tant kinematic parameters and speed:

1. Larger birds tend to use lower duty factors at a given relative speed, and in turn, they tend

to transition to an aerial run (β decreases below 0.5) at lower relative speeds.

2. Larger birds tend to have shorter stance durations at a given relative speed (Fig 2C).

3. Larger birds tend to use lower relative stride lengths at a given relative speed, and in turn,

they tend to transition to an aerial run at lower relative stride lengths (Fig 2E).

It is possible that it is not body mass per se that modulates these features, but rather it is the

degree of crouch, which co-varies with body mass (Fig 1E). Specifically, smaller birds have a
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more crouched posture, such that the functional length of their leg is proportionally greater

than their hip height, allowing them to maintain ground contact with the feet for longer dura-

tions (which increases stability), allowing them to make longer relative strides, and allowing

them to transition to an aerial run at faster relative speeds [21,120]. This realization has two

important implications for how the fossil trackways of theropods, and possibly all bipedal

dinosaurs, are interpreted.

Firstly, size-related differences in postural crouch have not been taken into consideration in

previous attempts at estimating trackmaker hip height from footprint length [80]. Current

methods may hence overestimate hip height in small species, or underestimate hip height in

large species, or both; a revision in light of the new empirical data presented here is therefore

Fig 16. Asymmetry in the force-time profiles of the different components of the GRF. (A, B) Differences in Fz
force-time profile asymmetry between birds (A) and humans (B), as quantified by the ratio of Fourier coefficients Za2/

Za1. (C, D) The force-time profile of Fx exhibits different gross shapes in birds (C) and humans (D). In birds, t(Fx = 0),

t(Fx,peak
+) and t(Fx,peak

–) all occur earlier in the stance compared to humans. (E, F) The differences in asymmetry of the

Fx force-time profile are probably due to differences in the location of the COM (black and white disk) relative to the

hips (hollow circle). As the GRF vector tracks the COM, at temporally equivalent points in the stance the GRF vector

will be more anteriorly inclined in birds (E) than humans (F). Note that the asymmetry results for a portion of the bird

data investigated in this study have previously been reported [64]. However, these results were presented in a

preliminary fashion, in raw format, not as the derived predictive relationships presented here.

https://doi.org/10.1371/journal.pone.0192172.g016
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warranted. Secondly, size-related differences in kinematics means that one simply cannot mea-

sure stride length, estimate relative stride length and then immediately identify what ‘gait’ the

animal was using [80] (see also [1]), unless the relative stride length was very low (slow ‘walk-

ing’, where vaulting-like COM mechanics dominate) or very high (fast ‘aerial running’, where

bouncing-like COM mechanics dominate). Moreover, given that birds, and possibly also non-

avian theropods, have a continuous locomotor repertoire [43], this further complicates the

matter, because ‘walking’ and ‘running’ are not easily distinguished at intermediate speeds.

Implications for biomechanical modelling

A key aim of this study was to produce predictive equations that may be used to facilitate

improved attempts at biomechanical modelling of extinct theropod locomotion. In addition to

achieving this aim, two findings of this study have important implications for future bio-

mechanical modelling work.

Of all the variables found to vary significantly with increasing speed in birds, not one

concerned the mediolateral component of the GRF, Fy. This is despite the fact that in

many birds step width (the mediolateral or transverse displacement between successive

footfalls) decreases with increasing speed [43]. Consequently, Fy could not be predicted

for birds, and thus prediction for extinct theropods cannot be made at the current time.

This is not overly problematic, however, since Fy was only found to be a small component

of the overall GRF vector (see above), and moreover would be expected to contribute min-

imally to mechanical energy fluctuations of the whole-body COM. The lack of predictabil-

ity in Fy possibly reflects the fact that the main movements for a parasagittal biped (such

as a typical ground-dwelling bird) are in the sagittal plane, and by extension so too are the

forces; it may also reflect to some degree of noise in the experimental data, but how much

remains to be determined. It is posited here that in straight-line locomotion, mediolateral

forces are probably only (or at least predominantly) exerted for stabilization purposes.

That is, they reflect small-scale, step-to-step adjustments made by the bird in order to

maintain dynamic stability. Therefore, rather than being an input to a biomechanical

model of theropod locomotion, Fy may be viewed as a constraint: simply apply whatever

Fy is necessary at each instant in time to maintain dynamic stability.

There is a theoretical precedent to expect that COM location may exert an influence on the

nature of the GRF, in particular, the degree of asymmetry in the force-time profiles of Fx and

Fz. This has important implications for how the BIRDS Model developed here is applied to

extinct theropods. The model would need no modification if it were applied to extinct birds,

providing that it could be shown that their COM was similarly positioned as in modern birds.

However, most (if not all) non-avian theropods are inferred to have had a COM located

markedly more posteriorly than in modern birds, closer to the hips [34,82–85]. This would

likely limit the application of the model in its current form. Further experimental investigation

is required to understand exactly how COM position may influence the GRF. One avenue is

comparative studies across related species that employ different postures (e.g., mallard versus

Indian runner ducks; [121]), or within species that display anatomical differences due to sex or

breeding status (e.g., peafowl; [122]). Experimental studies that artificially manipulate COM

location (e.g., [31]) may also offer some improved insight on this matter. Alternatively,

humans are also amenable to manipulative studies, and could be subject to experiments where

the COM location is altered in a controlled manner (cf. [123–125]). If a systematic relationship

was found between force-time profile asymmetry and COM location, then an adjustment

could be made to the model to facilitate its application to extinct non-avian theropods, once

their COM location was estimated.
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Conclusion

Through the comparative analysis across speed and body size, the results of this study have

reiterated the fact that ground-dwelling birds use a highly continuous terrestrial locomotor

repertoire. Unlike humans and many other terrestrial animals that have been investigated to

date, birds exhibit a continuous change with respect to speed in terms of kinematics. This con-

tinuous pattern has now also been demonstrated to occur for ground reaction forces and

COM energy fluctuations.

The comparative analysis undertaken here has also facilitated the development of a set of

predictive equations that relate several important kinematic and kinetic (GRF) variables to

speed in avian terrestrial locomotion, which may be extrapolated to extinct avian and non-

avian theropods.

Previously, it had not been possible to empirically predict even basic kinematic or kinetic

aspects of locomotion in extinct theropods, yet with the BIRDS Model that comprises these

predictive equations, such capabilities are now available, albeit with caveats. The BIRDS Model

that comprises these predictive equations has considerable explanatory power, and moreover

may be extrapolated to extinct theropods as well. As the location of the COM relative to the

hips probably exerts an important influence on the nature of the GRF, this is not the final itera-

tion of the model. Nevertheless, it is an important advancement in facilitating a better under-

standing of how extinct theropods may have moved around.

The results of this study have also provided further quantitative evidence for the importance

of body size on theropod locomotor biomechanics. In particular, body size exerts an influence

on the degree of postural crouch, as well as the relationship between speed and kinematic

parameters. Thus, at equivalent relative speeds, a small theropod will be moving in a decidedly

different fashion to a large theropod. This in turn raises concerns about the accuracy with

which palaeontologists can reliably interpret fossil theropod footprints, in terms of inferring

the posture and ‘gait’ of the trackmaker.
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