496 research outputs found
Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder
The first systematic observations of the middle atmosphere of Mars (35–80km) with the Mars Climate Sounder (MCS) show dramatic patterns of diurnal thermal variation, evident in retrievals of temperature and water ice opacity. At the time of writing, the data set of MCS limb retrievals is sufficient for spectral analysis within a limited range of latitudes and seasons. This analysis shows that these thermal variations are almost exclusively associated with a diurnal thermal tide. Using a Martian general circulation model to extend our analysis, we show that the diurnal thermal tide dominates these patterns for all latitudes and all seasons
Equatorial winds on Saturn and the stratospheric oscillation
The zonal jets on the giant planets have been thought to be stable in time. A decline in the velocity of Saturn’s equatorial jet has been identified, on the basis of a comparison of cloud-tracking data across two decades, but the differences in cloud speeds have since been suggested to stem from changes in cloud altitude in combination with vertical wind shear, rather than from temporal changes in wind strength at a given height. Here, we combine observations of cloud tracks and of atmospheric temperatures taken by two instruments on the Cassini spacecraft to reveal a significant temporal variation in the strength of the high-altitude equatorial jet on Saturn. Specifically, we find that wind speeds at atmospheric pressure levels of 60 mbar, corresponding to Saturn’s tropopause, increased by about 20 m s^(−1) between 2004 and 2008, whereas the wind speed has been essentially constant over time in the southern equatorial troposphere. The observations further reveal that the equatorial jet intensified by about 60 m s^(−1) between 2005 and 2008 in the stratosphere, that is, at pressure levels of 1–5 mbar. Because the wind acceleration is weaker near the tropopause than higher up, in the stratosphere, we conclude that the semi-annual equatorial oscillation of Saturn’s middle atmosphere is also damped as it propagates downwards
Narrative inquiry into (re)imagining alternative schools: a case study of Kevin Gonzales.
Although there are many alternative schools that strive for the successful education for their students, negative images of alternative schools persist. While some alternative schools are viewed as “idealistic havens,” many are viewed as “dumping grounds,” or “juvenile detention centers.” Employing narrative inquiry, this article interrogates how a student, Kevin Gonzales, experiences his alternative education and raises questions about the role of alternative schools. Kevin Gonzales’s story is presented in a literary form of biographical journal to provide a “metaphoric loft” that helps us imagine other students like Kevin. This, in turn, provokes us to examine our current educational practice, and to (re)imagine ways in which alternative education can provide the best possible educational experiences for disenfranchised students who are increasingly underserved by the public education system
Molecular effects of resistance elicitors from biological origin and their potential for crop protection
Plants contain a sophisticated innate immune network to prevent pathogenic microbes from gaining access to nutrients and from colonising internal structures. The first layer of inducible response is governed by the plant following the perception of microbe- or modified plant-derived molecules. As the perception of these molecules results in a plant response that can provide efficient resistance towards non-adapted pathogens they can also be described as ‘defence elicitors’. In compatible plant/microbe interactions, adapted microorganisms have means to avoid or disable this resistance response and promote virulence. However, this requires a detailed spatial and temporal response from the invading pathogens. In agricultural practice, treating plants with isolated defence elicitors in the absence of pathogens can promote plant resistance by uncoupling defence activation from the effects of pathogen virulence determinants. The plant responses to plant, bacterial, oomycete or fungal-derived elicitors are not, in all cases, universal and need elucidating prior to the application in agriculture. This review provides an overview of currently known elicitors of biological rather than synthetic origin and places their activity into a molecular context
Recommended from our members
Semiochemical-based alternatives to synthetic toxicant insecticides for pollen beetle management
There is an urgent need to develop sustainable pest management systems to protect arable crops in order to replace the current over-reliance on synthetic insecticides. Semiochemicals are insect- or plant-derived chemicals that are used by organisms as information signals. Integrated pest management tools are currently in development that utilise semiochemicals to manipulate the behaviour of pest insects and their natural enemies to provide effective control of pests within the crop. These innovative tools usually require fewer inputs and can involve multiple elements therefore reducing the likelihood of resistance developing compared with use of synthetic toxicants. We review here the life cycle of the pollen beetle Brassicogethes aeneus (previously known as Meligethes aeneus) which is a pest insect of oilseed rape (Brassica napus) and describe the current knowledge of any behaviour mediated by semiochemicals in this species. We discuss the behavioural processes where semiochemical-based control approaches may be appropriate and consider how these approaches could be integrated into an integrated pest management strategy for this important arable crop
Single domain antibody multimers confer protection against rabies infection
Post-exposure prophylactic (PEP) neutralizing antibodies against Rabies are the most effective way to prevent infection-related fatality. The outer envelope glycoprotein of the Rabies virus (RABV) is the most significant surface antigen for generating virus-neutralizing antibodies. The small size and uncompromised functional specificity of single domain antibodies (sdAbs) can be exploited in the fields of experimental therapeutic applications for infectious diseases through formatting flexibilities to increase their avidity towards target antigens. In this study, we used phage display technique to select and identify sdAbs that were specific for the RABV glycoprotein from a naïve llama-derived antibody library. To increase their neutralizing potencies, the sdAbs were fused with a coiled-coil peptide derived from the human cartilage oligomeric matrix protein (COMP48) to form homogenous pentavalent multimers, known as combodies. Compared to monovalent sdAbs, the combodies, namely 26424 and 26434, exhibited high avidity and were able to neutralize 85-fold higher input of RABV (CVS-11 strain) pseudotypes in vitro, as a result of multimerization, while retaining their specificities for target antigen. 26424 and 26434 were capable of neutralizing CVS-11 pseudotypes in vitro by 90–95% as compared to human rabies immunoglobulin (HRIG), currently used for PEP in Rabies. The multimeric sdAbs were also demonstrated to be partially protective for mice that were infected with lethal doses of rabies virus in vivo. The results demonstrate that the combodies could be valuable tools in understanding viral mechanisms, diagnosis and possible anti-viral candidate for RABV infection
Compensatory Growth of the Sandbar Shark in the Western North Atlantic Including the Gulf of Mexico
The number of Sandbar Sharks Carcharhinus plumbeus in the western North Atlantic Ocean has experienced a drastic decline since the early 1980s, reaching a minimum during the early 1990s. Catch rates in the early 1990s were a mere 25% of those during the 1980s. According to several fishery-independent surveys, the low point in Sandbar Shark abundance followed a period of high exploitation. Growth models fit to age-length data collected from 1980 to 1983 and from 2001 to 2004 were compared to investigate potential changes in parameter estimates that might reveal compensatory responses in the Sandbar Shark population. Statistical differences were found between the model parameters for the two time periods, but the differences in growth rates were minimal. The parameters from the three-parameter von Bertalanffy growth model for female sharks during the 1980-1983 and 2000-2004 time periods were as follows: L = 188.4 and 178.3cm FL; k = 0.084 and 0.106; and t(0) = -4.097 and -3.41. For males the growth parameters were as follows: L = 164.63 and 173.66cm; k = 0.11 and 0.11; and t(0) = -3.62 and -3.33. The estimated age at 50% maturity for female Sandbar Sharks changed from 15years to 12.49years between the two time periods
Saturn's emitted power
Long-term (2004–2009) on-orbit observations by Cassini Composite Infrared Spectrometer are analyzed to precisely measure Saturn's emitted power and its meridional distribution. Our evaluations suggest that the average global emitted power is 4.952 ± 0.035 W m^(−2) during the period of 2004–2009. The corresponding effective temperature is 96.67 ± 0.17 K. The emitted power is 16.6% higher in the Southern Hemisphere than in the Northern Hemisphere. From 2005 to 2009, the global mean emitted power and effective temperature decreased by ~2% and ~0.5%, respectively. Our study further reveals the interannual variability of emitted power and effective temperature between the epoch of Voyager (~1 Saturn year ago) and the current epoch of Cassini, suggesting changes in the cloud opacity from year to year on Saturn. The seasonal and interannual variability of emitted power implies that the energy balance and internal heat are also varying
Properties, production, and applications of camelid single-domain antibody fragments
Camelids produce functional antibodies devoid of light chains of which the single N-terminal domain is fully capable of antigen binding. These single-domain antibody fragments (VHHs or Nanobodies®) have several advantages for biotechnological applications. They are well expressed in microorganisms and have a high stability and solubility. Furthermore, they are well suited for construction of larger molecules and selection systems such as phage, yeast, or ribosome display. This minireview offers an overview of (1) their properties as compared to conventional antibodies, (2) their production in microorganisms, with a focus on yeasts, and (3) their therapeutic applications
- …
