249 research outputs found

    The Pain Divide: a cross-sectional analysis of chronic pain prevalence, pain intensity and opioid utilisation in England

    Get PDF
    Objectives: Our central research question was, in England, are geographical inequalities in opioid use driven by health need (pain)? To answer this question, our study examined: (1) if there are regional inequalities in rates of chronic pain prevalence, pain intensity and opioid utilisation in England; (2) if opioid use and chronic pain are associated after adjusting for individual-level and area-level confounders. Design: Cross-sectional study design using data from the Health Survey for England 2011. Setting England. Primary and secondary outcome measures: Chronic pain prevalence, pain intensity and opioid utilisation. Participants: Participant data relating to chronic pain prevalence, pain intensity and opioid usage data were obtained at local authority level from the Health Survey for England 2011; in total, 5711 respondents were included in our analysis. Methods: Regional and local authority data were mapped, and a generalised linear model was then used to explore the relationships between the data. The model was adjusted to account for area-level and individual-level variables. Results: There were geographical variations in chronic pain prevalence, pain intensity and opioid utilisation across the English regions—with evidence of a ‘pain divide’ between the North and the South, whereby people in the North of England more likely to have ‘severely limiting’ or ‘moderately limiting’ chronic pain. The intensity of chronic pain was significantly and positively associated with the use of opioid analgesics. Conclusions: There are geographical differences in chronic pain prevalence, pain intensity and opioid utilisation across England—with evidence of a ‘pain divide’. Given the public health concerns associated with the long-term use of opioid analgesics—and their questionable activity in the management of chronic pain—more guidance is needed to support prescribers in the management of chronic pain, so the initiation of opioids can be avoided

    Is basal ultrasensitive measurement of calcitonin capable of substituting for the pentagastrin-stimulation test?

    Get PDF
    OBJECTIVE: To evaluate a second-generation assay for basal serum calcitonin (CT) measurements compared with the pentagastrin-stimulation test for the diagnosis of inherited medullary thyroid carcinoma (MTC) and the follow-up of patients with MTC after surgery. Recent American Thyroid Association recommendations suggest the use of basal CT alone to diagnose and assess follow-up of MTC as the pentagastrin (Pg) test is unavailable in many countries. DESIGN: Multicentric prospective study. PATIENTS: A total of 162 patients with basal CT <10 ng/l were included: 54 asymptomatic patients harboured noncysteine \u27rearranged during transfection\u27 (RET) proto-oncogene mutations and 108 patients had entered follow-up of MTC after surgery. MEASUREMENT: All patients underwent basal and Pg-stimulated CT measurements using a second-generation assay with 5-ng/l functional sensitivity. RESULTS: Ninety-five per cent of patients with basal CT ≥ 5 ng/l and 25% of patients with basal CT <5 ng/l had a positive Pg-stimulation test (Pg CT >10 ng/l). Compared with the reference Pg test, basal CT ≥ 5 ng/l had 99% specificity, a 95%-positive predictive value but only 35% sensitivity (P < 0.0001). Overall, there were 31% less false-negative results using a 5-ng/l threshold for basal CT instead of the previously used 10-ng/l threshold. CONCLUSION: The ultrasensitive CT assay reduces the false-negative rate of basal CT measurements when diagnosing familial MTC and in postoperative follow-up compared with previously used assays. However, its sensitivity to detect C-cell disease remains lower than that of the Pg-stimulation test

    Nitrous oxide does not produce a clinically important sparing effect during closed-loop delivered propofol-remifentanil anaesthesia guided by the bispectral index: a randomized multicentre study†‡

    Get PDF
    Background Nitrous oxide (N2O) offers both hypnotic and analgesic characteristics. We therefore tested the hypothesis that N2O administration decreases the amount of propofol and remifentanil given by a closed-loop automated controller to maintain a similar bispectral index (BIS). Methods In a randomized multicentre double-blind study, patients undergoing elective surgery were randomly assigned to breathe 60% inspired N2O (N2O group) or 40% oxygen (AIR group). Anaesthesia depth was evaluated by the proportion of time where BIS was within the range of 40-60 (BIS40-60). The primary outcomes were propofol and remifentanil consumption, with reductions of 20% in either being considered clinically important. Results A total of 302 patients were randomized to the N2O group and 299 to the AIR group. At similar BIS40-60 [79 (67-86)% vs 76 (65-85)%], N2O slightly decreased propofol consumption [4.5 (3.7-5.5) vs 4.8 (4.0-5.9) mg kg−1 h−1, P=0.032], but not remifentanil consumption [0.17 (0.12-0.23) vs 0.18 (0.14-0.24) µg kg−1 min−1]. For the subgroups of men, at similar BIS40-60 [80 (72-88)% vs 80 (70-87)%], propofol [4.2 (3.4-5.3) vs 4.4 (3.6-5.4) mg kg−1 h−1] and remifentanil [0.19 (0.13-0.25) vs 0.18 (0.15-0.23) µg kg−1 min−1] consumptions were similar in the N2O vs AIR group, respectively. For the subgroups of women, at similar BIS40-60 [76 (64-84)% vs 72 (62-82)%], propofol [4.7 (4.0-5.8) vs 5.3 (4.5-6.6) mg kg−1 h−1, P=0.004] and remifentanil [0.18 (0.13-0.25) vs 0.20 (0.15-0.27) µg kg−1 min−1, P=0.029] consumptions decreased with the co-administration of N2O. Conclusions With automated drug administration titrated to comparable BIS, N2O only slightly reduced propofol consumption and did not reduce remifentanil consumption. There was a minor gender dependence, but not by a clinically important amount. Clinical trial registration This study was registered at ClinicalTrials.gov, number NCT0054720

    Conclusions and recommendations of a who expert consultation meeting on iron supplementation for infants and young children in malaria endemic areas [Conclusions et recommandations à l\u27issue de la consultation de l\u27oms sur la lutte contre la carence martiale chez le nourrisson et le jeune enfant dans les pays d\u27endémie palustre]

    Get PDF
    This article presents the results of an expert consultation meeting aimed at evaluating the safety and public health implications of administering supplemental iron to infants and young children in malaria-endemic areas. Participants at this meeting that took place in Lyon, France on June 12-14, 2006 reached consensus on several important issues related to iron supplementation for infants and young children in malaria-endemic areas. The conclusions in this report apply specifically to regions where malaria is endemic

    CT Characteristics of Pheochromocytoma: Relevance for the Evaluation of Adrenal Incidentaloma.

    Get PDF
    BACKGROUND: Up to 7% of all adrenal incidentalomas (AIs) are pheochromocytomas (PCCs). In the evaluation of AI, it is generally recommended that PCC be excluded by measurement of plasma-free or 24-hour urinary fractionated metanephrines. However, recent studies suggest that biochemical exclusion of PCC not be performed for lesions with CT characteristics of an adrenocortical adenoma (ACA). AIM: To determine the proportion of PCCs with ACA-like attenuation or contrast washout on CT. METHODS: For this multicenter retrospective study, two central investigators independently analyzed the CT reports of 533 patients with 548 histologically confirmed PCCs. Data on tumor size, unenhanced Hounsfield units (HU), absolute percentage washout (APW), and relative percentage washout (RPW) were collected in addition to clinical parameters. RESULTS: Among the 376 PCCs for which unenhanced attenuation data were available, 374 had an attenuation of >10 HU (99.5%). In the two exceptions (0.5%), unenhanced attenuation was exactly 10 HU, which lies just within the range of ≤10 HU that would suggest a diagnosis of ACA. Of 76 PCCs with unenhanced HU > 10 and available washout data, 22 (28.9%) had a high APW and/or RPW, suggestive of ACA. CONCLUSION: Based on the lack of PCCs with an unenhanced attenuation of <10 HU and the low proportion (0.5%) of PCCs with an attenuation of 10 HU, it seems reasonable to abstain from biochemical testing for PCC in AIs with an unenhanced attenuation of ≤10 HU. The assessment of contrast washout, however, is unreliable for ruling out PCC

    An Inverse Method to Obtain Porosity, Fibre Diameterand Density of Fibrous Sound Absorbing Materials

    Get PDF
    Characterization of sound absorbing materials is essential to predict its acoustic behaviour. The most commonly used models to do so consider the flow resistivity, porosity, and average fibre diameter as parameters to determine the acoustic impedance and sound absorbing coefficient. Besides direct experimental techniques, numerical approaches appear to be an alternative to estimate the material's parameters. In this work an inverse numerical method to obtain some parameters of a fibrous material is presented. Using measurements of the normal incidence sound absorption coefficient and then using the model proposed by Voronina, subsequent application of basic minimization techniques allows one to obtain the porosity, average fibre diameter and density of a sound absorbing material. The numerical results agree fairly well with the experimental data.This work has been supported by the Ministerio de Educacion y Ciencia-D.G. Investigacion (BIA2007-68098-C02-01 and BIA2007-68098-C02-02) and also from the Spanish Ministry of Foreign Affairs and Cooperation through the Inter-University and Scientific Research Cooperation Program (A/023748/09).Alba Fernández, J.; Rey Tormos, RMD.; Ramis Soriano, J.; Arenas, JP. (2011). An Inverse Method to Obtain Porosity, Fibre Diameterand Density of Fibrous Sound Absorbing Materials. Archives of Acoustics. 36(3):561-574. https://doi.org/10.2478/v10168-011-0040-xS561574363Allard, J., & Champoux, Y. (1992). New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America, 91(6), 3346-3353. doi:10.1121/1.402824Attenborough, K. (1983). Acoustical characteristics of rigid fibrous absorbents and granular materials. The Journal of the Acoustical Society of America, 73(3), 785-799. doi:10.1121/1.389045Bies, D. A., & Hansen, C. H. (1980). Flow resistance information for acoustical design. Applied Acoustics, 13(5), 357-391. doi:10.1016/0003-682x(80)90002-xChampoux, Y., Stinson, M. R., & Daigle, G. A. (1991). Air‐based system for the measurement of porosity. The Journal of the Acoustical Society of America, 89(2), 910-916. doi:10.1121/1.1894653Crocker, M. J., & Arenas, J. P. (s. f.). Use of Sound-Absorbing Materials. Handbook of Noise and Vibration Control, 696-713. doi:10.1002/9780470209707.ch57Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9Dunn, I. P., & Davern, W. A. (1986). Calculation of acoustic impedance of multi-layer absorbers. Applied Acoustics, 19(5), 321-334. doi:10.1016/0003-682x(86)90044-7Fellah, Z. E. A., Berger, S., Lauriks, W., Depollier, C., Aristégui, C., & Chapelon, J.-Y. (2003). Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence. The Journal of the Acoustical Society of America, 113(5), 2424-2433. doi:10.1121/1.1567275Fellah, Z. E. A., Berger, S., Lauriks, W., Depollier, C., & Fellah, M. (2003). Measuring the porosity of porous materials having a rigid frame via reflected waves: A time domain analysis with fractional derivatives. Journal of Applied Physics, 93(1), 296-303. doi:10.1063/1.1524025Fellah, Z. E. A., Berger, S., Lauriks, W., Depollier, C., Trompette, P., & Chapelon, J. Y. (2003). Ultrasonic measurement of the porosity and tortuosity of air-saturated random packings of beads. Journal of Applied Physics, 93(11), 9352-9359. doi:10.1063/1.1572191Fellah, Z. E. A., Mitri, F. G., Fellah, M., Ogam, E., & Depollier, C. (2007). Ultrasonic characterization of porous absorbing materials: Inverse problem. Journal of Sound and Vibration, 302(4-5), 746-759. doi:10.1016/j.jsv.2006.12.007Garai, M., & Pompoli, F. (2005). A simple empirical model of polyester fibre materials for acoustical applications. Applied Acoustics, 66(12), 1383-1398. doi:10.1016/j.apacoust.2005.04.008ISO (1998), 10534-2:1998. Acoustics - determination of sound absorption coefficient and impedance in impedance tubes - Part 2: transfer-function method, International Organization for Standardization, Geneva.Miki, Y. (1990). Acoustical properties of porous materials. Modifications of Delany-Bazley models. Journal of the Acoustical Society of Japan (E), 11(1), 19-24. doi:10.1250/ast.11.19Miki, Y. (1990). Acoustical properties of porous materials. Generalizations of empirical models. Journal of the Acoustical Society of Japan (E), 11(1), 25-28. doi:10.1250/ast.11.25Ramis, J., Alba, J., Del Rey, R., Escuder, E., & Sanchís, V. J. (2010). Nuevos materiales absorbentes acústicos basados en fibra de kenaf. Materiales de Construcción, 60(299), 133-143. doi:10.3989/mc.2010.50809Shoshani, Y., & Yakubov, Y. (2000). Numerical assessment of maximal absorption coefficients for nonwoven fiberwebs. Applied Acoustics, 59(1), 77-87. doi:10.1016/s0003-682x(99)00015-8Umnova, O., Attenborough, K., Shin, H.-C., & Cummings, A. (2005). Deduction of tortuosity and porosity from acoustic reflection and transmission measurements on thick samples of rigid-porous materials. Applied Acoustics, 66(6), 607-624. doi:10.1016/j.apacoust.2004.02.005Voronina, N. (1994). Acoustic properties of fibrous materials. Applied Acoustics, 42(2), 165-174. doi:10.1016/0003-682x(94)90005-1Voronina, N. (1996). Improved empirical model of sound propagation through a fibrous material. Applied Acoustics, 48(2), 121-132. doi:10.1016/0003-682x(95)00055-eVoronina, N. (1998). An empirical model for elastic porous materials. Applied Acoustics, 55(1), 67-83. doi:10.1016/s0003-682x(97)00098-4Voronina, N. (1999). An empirical model for rigid-frame porous materials with low porosity. Applied Acoustics, 58(3), 295-304. doi:10.1016/s0003-682x(98)00076-0Voronina, N. ., & Horoshenkov, K. . (2003). A new empirical model for the acoustic properties of loose granular media. Applied Acoustics, 64(4), 415-432. doi:10.1016/s0003-682x(02)00105-6Wang, X., Eisenbrey, J., Zeitz, M., & Sun, J. Q. (2004). Multi-stage regression analysis of acoustical properties of polyurethane foams. Journal of Sound and Vibration, 273(4-5), 1109-1117. doi:10.1016/j.jsv.2003.09.039Wilson, D. K. (1997). Simple, relaxational models for the acoustical properties of porous media. Applied Acoustics, 50(3), 171-188. doi:10.1016/s0003-682x(96)00048-

    North Andean origin and diversification of the largest ithomiine butterfly genus

    Get PDF
    The Neotropics harbour the most diverse flora and fauna on Earth. The Andes are a major centre of diversification and source of diversity for adjacent areas in plants and vertebrates, but studies on insects remain scarce, even though they constitute the largest fraction of terrestrial biodiversity. Here, we combine molecular and morphological characters to generate a dated phylogeny of the butterfly genus Pteronymia\textit{Pteronymia} (Nymphalidae: Danainae), which we use to infer spatial, elevational and temporal diversification patterns. We first propose six taxonomic changes that raise the generic species total to 53, making Pteronymia\textit{Pteronymia} the most diverse genus of the tribe Ithomiini. Our biogeographic reconstruction shows that Pteronymia\textit{Pteronymia} originated in the Northern Andes, where it diversified extensively. Some lineages colonized lowlands and adjacent montane areas, but diversification in those areas remained scarce. The recent colonization of lowland areas was reflected by an increase in the rate of evolution of species' elevational ranges towards present. By contrast, speciation rate decelerated with time, with no extinction. The geological history of the Andes and adjacent regions have likely contributed to Pteronymia\textit{Pteronymia} diversification by providing compartmentalized habitats and an array of biotic and abiotic conditions, and by limiting dispersal between some areas while promoting interchange across others.ME acknowledges financial support from ANR SPECREP and CNRS (France) and the Leverhulme trust (UK). LDS’s postdoc was funded by an ATIP (CNRS, France) grant awarded to ME. NC was funded by a doctoral grant from the Doctoral School 227 (Sciences de la Nature et de l’Homme: Evolution et Ecologie, France). KW acknowledges funding from NSF (DEB-0639861, DEB-0103746), the National Geographic Society, the Darwin Initiative and the Leverhulme Trust. A.V.L.F. thanks CNPq (fellowships 302585/2011-7 and 303834/2015-3), RedeLep-SISBIOTABrasil/CNPq (563332/2010-7), BR-BoL (MCT/CNPq/FNDCT 50/2010) and FAPESP (BIOTA-FAPESP Programs 2011/50225-3, 2012/50260-6 and 2013/50297-0). KLSB acknowledges support by FAPESP (2012/16266-6). Support for components of this work was provided through a collaborative grant, Dimensions US-Biota-São Paulo, supported by the US National Science Foundation (NSF DEB 1241056), National Aeronautics and Space Administration (NASA), and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP Grant 2012/50260-6). Molecular work was performed at the GenePool (University of Edinburgh, UK), UCL (UK) and the Service of Molecular Systematics UMS2700 of the MNHN (France). Work by SK and TS to construct the original Solanaceae phylogeny was funded by the National Science Foundation (DEB-0316614)
    corecore