921 research outputs found

    Reception frequency bandwidth of a gravitational resonant detector with optical readout

    Full text link
    A gravitational resonant bar detector with a large scale Fabry-Perot cavity as an optical read out and a mechanical displacement transformer is considered. We calculate, in a fully analytical way, the final receiver bandwidth in which the potential sensitivity, limited only by the bar thermal noise, is maintained despite the additional thermal noise of the transformer and the additive noise of the optical readout. We discuss also an application to the OGRAN project, where the bar is instrumented with a 2m long FP cavity.Comment: 16 pages + 3 figures. Accepted for publicationi in Class. Quantum Gra

    Signatures of photon and axion-like particle mixing in the gamma-ray burst jet

    Get PDF
    Photons couple to Axion-Like Particles (ALPs) or more generally to any pseudo Nambu-Goldstone boson in the presence of an external electromagnetic field. Mixing between photons and ALPs in the strong magnetic field of a Gamma-Ray Burst (GRB) jet during the prompt emission phase can leave observable imprints on the gamma-ray polarization and spectrum. Mixing in the intergalactic medium is not expected to modify these signatures for ALP mass > 10^(-14) eV and/or for < nG magnetic field. We show that the depletion of photons due to conversion to ALPs changes the linear degree of polarization from the values predicted by the synchrotron model of gamma ray emission. We also show that when the magnetic field orientation in the propagation region is perpendicular to the field orientation in the production region, the observed synchrotron spectrum becomes steeper than the theoretical prediction and as detected in a sizable fraction of GRB sample. Detection of the correlated polarization and spectral signatures from these steep-spectrum GRBs by gamma-ray polarimeters can be a very powerful probe to discover ALPs. Measurement of gamma-ray polarization from GRBs in general, with high statistics, can also be useful to search for ALPs.Comment: 17 pages, 3 figures. Accepted for publication in JCAP with minor change

    An investigation of the RWPE prostate derived family of cell lines using FTIR spectroscopy

    Get PDF
    Interest in developing robust, quicker and easier diagnostic tests for cancer has lead to an increased use of Fourier transform infrared (FTIR) spectroscopy to meet that need. In this study we present the use of different experimental modes of infrared spectroscopy to investigate the RWPE human prostate epithelial cell line family which are derived from the same source but differ in their mode of transformation and their mode of invasive phenotype. Importantly, analysis of the infrared spectra obtained using different experimental modes of infrared spectroscopy produces similar results. The RWPE family of cell lines can be separated into groups based upon the method of cell transformation rather than the resulting invasiveness/aggressiveness of the cell line. The study also demonstrates the possibility of using a genetic algorithm as a possible standardised pre-processing step and raises the important question of the usefulness of cell lines to create a biochemical model of prostate cancer progression

    Axion-like particle effects on the polarization of cosmic high-energy gamma sources

    Get PDF
    Various satellite-borne missions are being planned whose goal is to measure the polarization of a large number of gamma-ray bursts (GRBs). We show that the polarization pattern predicted by current models of GRB emission can be drastically modified by the existence of very light axion-like particles (ALPs), which are present in many extensions of the Standard Model of particle physics. Basically, the propagation of photons emitted by a GRB through cosmic magnetic fields with a domain-like structure induces photon-ALP mixing, which is expected to produce a strong modification of the original photon polarization. Because of the random orientation of the magnetic field in each domain, this effect strongly depends on the orientation of the photon line of sight. As a consequence, photon-ALP conversion considerably broadens the original polarization distribution. Searching for such a peculiar feature through future high-statistics polarimetric measurements is therefore a new opportunity to discover very light ALPs.Comment: Final version (21 pages, 8 eps figures). Matches the version published on JCAP. Added a Section on the effects of cosmic expansion on photon-ALP conversions. Figures modified to take into account this effect. References updated. Conclusions unchanged

    "Evaporation" of a flavor-mixed particle from a gravitational potential

    Full text link
    We demonstrate that a stable particle with flavor mixing, confined in a gravitational potential can gradually and irreversibly escape -- or "evaporate" -- from it. This effect is due to mass eigenstate conversions which occur in interactions (scattering) of mass states with other particles even when the energy exchange between them is vanishing. The evaporation and conversion are quantum effects not related to flavor oscillations, particle decay, quantum tunneling or other well-known processes. Apart from their profound academic interest, these effects should have tremendous implications for cosmology, e.g., (1) the cosmic neutrino background distortion is predicted and (2) the softening of central cusps in dark matter halos and smearing out or destruction of dwarf halos were suggested.Comment: 8 pages, 1 figur

    Stochastic conversions of TeV photons into axion-like particles in extragalactic magnetic fields

    Get PDF
    Very-high energy photons emitted by distant cosmic sources are absorbed on the extragalactic background light (EBL) during their propagation. This effect can be characterized in terms of a photon transfer function at Earth. The presence of extragalactic magnetic fields could also induce conversions between very high-energy photons and hypothetical axion-like particles (ALPs). The turbulent structure of the extragalactic magnetic fields would produce a stochastic behaviour in these conversions, leading to a statistical distribution of the photon transfer functions for the different realizations of the random magnetic fields. To characterize this effect, we derive new equations to calculate the mean and the variance of this distribution. We find that, in presence of ALP conversions, the photon transfer functions on different lines of sight could have relevant deviations with respect to the mean value, producing both an enhancement or a suppression in the observable photon flux with respect to the expectations with only absorption. As a consequence, the most striking signature of the mixing with ALPs would be a reconstructed EBL density from TeV photon observations which appears to vary over different directions of the sky: consistent with standard expectations in some regions, but inconsistent in others.Comment: v2: 22 pages, 5 eps figures. Minor changes. A reference added. Matches the version published on JCA

    Real-world use of blinatumomab in adult patients with B-cell acute lymphoblastic leukemia in clinical practice : results from the NEUF study

    Get PDF
    Altres ajuts: Amgen (Europe) GmbHThis retrospective observational study (NEUF) included adult patients with B-cell acute lymphoblastic leukemia (B-cell ALL) who had received blinatumomab for the treatment of minimal residual disease-positive (MRD+) or relapsed/refractory (R/R) B-cell ALL via an expanded access program (EAP). Patients were eligible if blinatumomab was initiated via the EAP between January 2014 and June 2017. Patients were followed from blinatumomab initiation until death, entry into a clinical trial, the end of follow-up, or the end of the study period (December 31, 2017), whichever occurred first. Of the 249 adult patients included, 109 were MRD+ (83 Philadelphia chromosome-negative [Ph−] and 26 Philadelphia chromosome-positive [Ph+]) and 140 had a diagnosis of R/R B-cell ALL (106 Ph− and 34 Ph+). In the MRD+ group, within the first cycle of blinatumomab treatment, 93% (n = 49/53) of Ph− and 64% (n = 7/11) of Ph+ patients with evaluable MRD achieved an MRD response (MRD <0.01%). Median overall survival (OS) was not reached over a median follow-up time of 18.5 months (Ph−, 18.8 [range: 5.1-34.8] months; Ph+, 16.5 [range: 1.8-31.6] months). In the R/R group, within two cycles of blinatumomab, 51% of Ph− and 41% of Ph+ patients achieved complete hematologic remission (CR/CRh/CRi), and 83% of Ph− and 67% of Ph+ MRD-evaluable patients in CR/CRh/CRi achieved an MRD response. Median (95% confidence interval) OS was 12.2 (7.3-24.2) months in the R/R Ph− subgroup and 16.3 (5.3-not estimated) months in the R/R Ph+ subgroup. This large, real-world data set of adults with B-cell ALL treated with blinatumomab confirms efficacy outcomes from published studies

    Hints of an axion-like particle mixing in the GeV gamma-ray blazar data?

    Get PDF
    Axion-Like Particles (ALPs), if exist in nature, are expected to mix with photons in the presence of an external magnetic field. The energy range of photons which undergo strong mixing with ALPs depends on the ALP mass, on its coupling with photons as well as on the external magnetic field and particle density configurations. Recent observations of blazars by the Fermi Gamma-Ray Space Telescope in the 0.1-300 GeV energy range show a break in their spectra in the 1-10 GeV range. We have modeled this spectral feature for the flat-spectrum radio quasar 3C454.3 during its November 2010 outburst, assuming that a significant fraction of the gamma rays convert to ALPs in the large scale jet of this blazar. Using theoretically motivated models for the magnetic field and particle density con figurations in the kiloparsec scale jet, outside the broad-line region, we find an ALP mass m(a) similar to (1 ¿ 3).10(-7) eV and coupling g(a gamma) similar to (1 ¿ 3).10(-10) GeV-1 after performing an illustrative statistical analysis of spectral data in four different epochs of emission. The precise values of m(a) and g(a gamma) depend weakly on the assumed particle density con figuration and are consistent with the current experimental bounds on these quantities. We apply this method and ALP parameters found from fitting 3C454.3 data to another flat-spectrum radio quasar PKS1222+216 (4C+21.35) data up to 400 GeV, as a consistency check, and found good fit. We find that the ALP-photon mixing effect on the GeV spectra may not be washed out for any reasonable estimate of the magnetic field in the intergalactic media

    Initial operation of the International Gravitational Event Collaboration

    Full text link
    The International Gravitational Event Collaboration, IGEC, is a coordinated effort by research groups operating gravitational wave detectors working towards the detection of millisecond bursts of gravitational waves. Here we report on the current IGEC resonant bar observatory, its data analysis procedures, the main properties of the first exchanged data set. Even though the available data set is not complete, in the years 1997 and 1998 up to four detectors were operating simultaneously. Preliminary results are mentioned.Comment: 8 pages, 2 figures, 3 tables; Proceeding of the GWDAW'99. Submitted to the International Journal of Modern Physic

    IGEC2: A 17-month search for gravitational wave bursts in 2005-2007

    Get PDF
    We present here the results of a 515 days long run of the IGEC2 observatory, consisting of the four resonant mass detectors ALLEGRO, AURIGA, EXPLORER and NAUTILUS. The reported results are related to the fourfold observation time from Nov. 6 2005 until Apr. 14 2007, when Allegro ceased its operation. This period overlapped with the first long term observations performed by the LIGO interferometric detectors. The IGEC observations aim at the identification of gravitational wave candidates with high confidence, keeping the false alarm rate at the level of 1 per century, and high duty cycle, namely 57% with all four sites and 94% with at least three sites in simultaneous observation. The network data analysis is based on time coincidence searches over at least three detectors: the four 3-fold searches and the 4-fold one are combined in a logical OR. We exchanged data with the usual blind procedure, by applying a unique confidential time offset to the events in each set of data. The accidental background was investigated by performing sets of 10^8 coincidence analyses per each detector configuration on off-source data, obtained by shifting the time series of each detector. The thresholds of the five searches were tuned so as to control the overall false alarm rate to 1/century. When the confidential time shifts was disclosed, no gravitational wave candidate was found in the on-source data. As an additional output of this search, we make available to other observatories the list of triple coincidence found below search thresholds, corresponding to a false alarm rate of 1/month.Comment: 10 pages, 8 figures Accepted for publication on Phys. Rev.
    corecore