282 research outputs found

    Is there a hidden hole in Type Ia supernova remnants?

    Get PDF
    In this paper we report on the bulk features of the hole carved by the companion star in the material ejected during a Type Ia supernova explosion. In particular we are interested in the long term evolution of the hole as well as in its fingerprint in the geometry of the supernova remnant after several centuries of evolution, which is a hot topic in current Type Iasupernovae studies. We use an axisymmetric smoothed particle hydrodynamics code to characterize the geometric properties of the supernova remnant resulting from the interaction of this ejected material with the ambient medium. Our aim is to use supernova remnant observations to constrain the single degenerate scenario for Type Ia supernova progenitors. Our simulations show that the hole will remain open during centuries, although its partial or total closure at later times due to hydrodynamic instabilities is not excluded. Close to the edge of the hole, the Rayleigh-Taylor instability grows faster, leading to plumes that approach the edge of the forward shock. We also discuss other geometrical properties of the simulations, like the evolution of the contact discontinuity.Comment: 48 pages, 17 figures; Accepted for publication in Ap

    An X-Ray Study of Supernova Remnant N49 and Soft Gamma-Ray Repeater 0526-66 in the Large Magellanic Cloud

    Full text link
    We report on the results from our deep Chandra observation (120 ks) of the supernova remnant (SNR) N49 and soft Gamma-ray repeater (SGR) 0526-66 in the Large Magellanic Cloud. We firmly establish the detection of an ejecta "bullet" beyond the southwestern boundary of N49. The X-ray spectrum of the bullet is distinguished from that of the main SNR shell, showing significantly enhanced Si and S abundances. We also detect an ejecta feature in the eastern shell, which shows metal overabundances similar to those of the bullet. If N49 was produced by a core-collapse explosion of a massive star, the detected Si-rich ejecta may represent explosive O-burning or incomplete Si-burning products from deep interior of the supernova. On the other hand, the observed Si/S abundance ratio in the ejecta may favor Type Ia origin for N49. We refine the Sedov age of N49, tau_Sed ~ 4800 yr, with the explosion energy E_0 ~ 1.8 x 10^51 erg. Our blackbody (BB) + power law (PL) model for the quiescent X-ray emission from SGR 0526-66 indicates that the PL photon index (Gamma ~ 2.5) is identical to that of PSR 1E1048.1-5937, the well-known candidate transition object between anomalous X-ray pulsars and SGRs. Alternatively, the two-component BB model implies X-ray emission from a small (R ~ 1 km) hot spot(s) (kT ~ 1 keV) in addition to emission from the neutron star's cooler surface (R ~ 10 km, kT ~ 0.4 keV). There is a considerable discrepancy in the estimated column toward 0526-66 between BB+PL and BB+BB model fits. Discriminating these spectral models would be crucial to test the long-debated physical association between N49 and 0526-66.Comment: Accepted by ApJ, 27 pages in total (aastex preprint format) including 5 figures (4 in color) and 5 table

    A Super-Solar Metallicity for the Progenitor of Kepler's Supernova

    Get PDF
    We have performed deep X-ray observations of the remnant of Kepler's supernova (SN 1604) as a Key Project of the Suzaku Observatory. Our main goal is to detect secondary Fe-peak elements in the SN ejecta to gain insights into the Type Ia supernova explosion mechanism and the nature of the progenitor. Here we report our initial results. We made a conclusive detection of X-ray emission lines from highly ionized Mn, Cr, and Ni as well as Fe. The observed Mn-to-Cr line flux ratio is ~0.60, ~30% larger than that measured in Tycho's remnant. We estimate a Mn-to-Cr mass ratio of ~0.77, which is strongly suggestive of a large neutron excess in the progenitor star before the onset of the thermonuclear runaway. The observed Ni-to-Fe line flux ratio (~0.03) corresponds to a mass ratio of ~0.06, which is generally consistent with the products of explosive Si-burning regime in Type Ia explosion models, and rules out contamination from the products of neutron-rich nuclear statistical equilibrium in the shocked ejecta. Together with the previously suggested luminous nature of the explosion, these mass ratios provide strong evidence for a super-solar metallicity in the SN progenitor (~3 Z_sun). Kepler's supernova was likely the thermonuclear explosion of a white dwarf formed in the recent past that must have exploded through a relatively prompt channel.Comment: Total 12 pages including 2 tables and 2 color figures. Accepted by ApJ

    Are the Models for Type Ia Supernova Progenitors Consistent with the Properties of Supernova Remnants?

    Get PDF
    We explore the relationship between the models for progenitor systems of Type Ia supernovae and the properties of the supernova remnants that evolve after the explosion. Most models for Type Ia progenitors in the single degenerate scenario predict substantial outflows during the presupernova evolution. Expanding on previous work, we estimate the imprint of these outflows on the structure of the circumstellar medium at the time of the supernova explosion, and the effect that this modified circumstellar medium has on the evolution of the ensuing supernova remnant. We compare our simulations with the observational properties of known Type Ia supernova remnants in the Galaxy (Kepler, Tycho, SN 1006), the Large Magellanic Cloud (0509-67.5, 0519-69.0, N103B), and M31 (SN 1885). We find that optically thick outflows from the white dwarf surface (sometimes known as accretion winds) with velocities above 200 km/s excavate large low-density cavities around the progenitors. Such large cavities are incompatible with the dynamics of the forward shock and the X-ray emission from the shocked ejecta in all the Type Ia remnants that we have examined.Comment: To appear in ApJ. 17 pages, 10 figures, emulateap

    Supernova Remnants as Clues to Their Progenitors

    Full text link
    Supernovae shape the interstellar medium, chemically enrich their host galaxies, and generate powerful interstellar shocks that drive future generations of star formation. The shock produced by a supernova event acts as a type of time machine, probing the mass loss history of the progenitor system back to ages of \sim 10 000 years before the explosion, whereas supernova remnants probe a much earlier stage of stellar evolution, interacting with material expelled during the progenitor's much earlier evolution. In this chapter we will review how observations of supernova remnants allow us to infer fundamental properties of the progenitor system. We will provide detailed examples of how bulk characteristics of a remnant, such as its chemical composition and dynamics, allow us to infer properties of the progenitor evolution. In the latter half of this chapter, we will show how this exercise may be extended from individual objects to SNR as classes of objects, and how there are clear bifurcations in the dynamics and spectral characteristics of core collapse and thermonuclear supernova remnants. We will finish the chapter by touching on recent advances in the modeling of massive stars, and the implications for observable properties of supernovae and their remnants.Comment: A chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin (18 pages, 6 figures

    The Imprint of Presupernova Evolution on Supernovae Remnants

    Get PDF
    The evolution of type Ia supernova binary system progenitors is highly uncertain. Several evolutionary models predict that the accretion of mass onto the white dwarf is accompanied by mass ejection from the binary in the form of a powerful wind, but very few observations have been made during the initial phase of formation of supernovae remnants, when the interaction of supernova ejecta with presupernova wind could be tested. Here we present hydrodynamical simulations of supernova ejecta interaction with an ambient medium modified by presupernova wind. The structure of the ambient medium when the supernova explodes is very sensitive to the details of wind history, and the evolution of the supernova remnant can be affected during several thousand years. We have found that the forward shock expansion parameter is a good tool for discriminating between several wind models. The evolution of the supernova remnant in the presence of an ambient medium modified by interaction with pre-supernova wind cannot be described by a similarity solution. We also rule out simple models based on a circumstellar medium that merges smoothly with a uniform density ambient medium.Comment: 18 pages, 5 figures, to be published in ApJ

    The metal contents of two groups of galaxies

    Full text link
    The hot gas in clusters and groups of galaxies is continuously being enriched with metals from supernovae and stars. It is well established that the enrichment of the gas with elements from oxygen to iron is mainly caused by supernova explosions. The origins of nitrogen and carbon are still being debated. Possible candidates include massive, metal-rich stars, early generations of massive stars, intermediate or low mass stars and Asymptotic Giant Branch (AGB) stars. In this paper we accurately determine the metal abundances of the gas in the groups of galaxies NGC 5044 and NGC 5813, and discuss the nature of the objects that create these metals. We mainly focus on carbon and nitrogen. We use spatially-resolved high-resolution X-ray spectroscopy from XMM-Newton. For the spectral fitting, multi-temperature hot gas models are used. The abundance ratios of carbon over oxygen and nitrogen over oxygen that we find are high compared to the ratios in the stars in the disk of our Galaxy. The oxygen and nitrogen abundances we derive are similar to what was found in earlier work on other giant ellipticals in comparable environments. We show that the iron abundances in both our sources have a gradient along the cross-dispersion direction of the Reflection Grating Spectrometer (RGS). We conclude that it is unlikely that the creation of nitrogen and carbon takes place in massive stars, which end their lives as core-collapse supernovae, enriching the medium with oxygen because oxygen should then also be enhanced. Therefore we favour low-and intermediate mass stars as sources of these elements. The abundances in the hot gas can best be explained by a 30-40% contribution of type Ia supernovae based on the measured oxygen and iron abundances and under the assumption of a Salpeter Initial Mass Function (IMF).Comment: Accepted for publication in A&A, 12 pages, 10 figures. Data points on which figs 4,5,8 and 9 are based are present as comment in the source fil

    Observations of SN2011fe with INTEGRAL

    Full text link
    SN2011fe was detected by the Palomar Transient Factory on August 24th 2011 in M101 few hours after the explosion. From the early spectra it was immediately realized that it was a Type Ia supernova thus making this event the brightest one discovered in the last twenty years. In this paper the observations performed with the instruments on board of INTEGRAL (SPI, IBIS/ISGRI, JEM-X and OMC) before and after the maximum of the optical light as well as the interpretation in terms of the existing models of γ\gamma--ray emission from such kind of supernovae are reported. All INTEGRAL high-energy have only been able to provide upper limits to the expected emission due to the decay of 56^{56}Ni. These bounds allow to reject explosions involving a massive white dwarf in the sub--Chandrasekhar scenario. On the other hand, the optical light curve obtained with the OMC camera suggests that the event was produced by a delayed detonation of a CO white dwarf that produced 0.5\sim 0.5 M\odot of 56^{56}Ni. In this particular case, INTEGRAL would have only been able to detect the early γ\gamma--ray emission if the supernova had occurred at a distance of 2 -3 Mpc, although the brightest event could be visible up to distances larger by a factor two.Comment: Proceedings of "An INTEGRAL view of the high-energy sky (the first 10 years)" the 9th INTEGRAL Workshop, October 15-19, 2012, Paris, France, in Proceedings of Science (INTEGRAL 2012), Eds. A. Goldwurm, F. Lebrun and C. Winkler, http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=176, id number PoS (INTEGRAL 2012) 103 (2013

    Observation of SN2011fe with INTEGRAL. I. Pre--maximum phase

    Get PDF
    SN2011fe was detected by the Palomar Transient Factory on August 24th 2011 in M101 a few hours after the explosion. From the early optical spectra it was immediately realized that it was a Type Ia supernova thus making this event the brightest one discovered in the last twenty years. The distance of the event offered the rare opportunity to perform a detailed observation with the instruments on board of INTEGRAL to detect the gamma-ray emission expected from the decay chains of 56^{56}Ni. The observations were performed in two runs, one before and around the optical maximum, aimed to detect the early emission from the decay of 56^{56}Ni and another after this maximum aimed to detect the emission of 56^{56}Co. The observations performed with the instruments on board of INTEGRAL (SPI, IBIS/ISGRI, JEMX and OMC) have been analyzed and compared with the existing models of gamma-ray emission from such kind of supernovae. In this paper, the analysis of the gamma-ray emission has been restricted to the first epoch. Both, SPI and IBIS/ISGRI, only provide upper-limits to the expected emission due to the decay of 56^{56}Ni. These upper-limits on the gamma-ray flux are of 7.1 ×\times 105^{-5} ph/s/cm2^2 for the 158 keV line and of 2.3 ×\times 104^{-4} ph/s/cm2^2 for the 812 keV line. These bounds allow to reject at the 2σ2\sigma level explosions involving a massive white dwarf, 1\sim 1 M\odot in the sub--Chandrasekhar scenario and specifically all models that would have substantial amounts of radioactive 56^{56}Ni in the outer layers of the exploding star responsible of the SN2011fe event. The optical light curve obtained with the OMC camera also suggests that SN2011fe was the outcome of the explosion, possibly a delayed detonation although other models are possible, of a CO white dwarf that synthesized 0.55\sim 0.55 M_\odot of 56^{56}Ni. For this specific model.Comment: Accepted for publication in A&A. 10 pages, 10 figure
    corecore