19 research outputs found

    The application of 2-D dual nanoscale liquid chromatography and triple quadrupole-linear ion trap system for the identification of proteins

    No full text
    2-D nanoscale LC combined with a triple quadrupole-linear ion trap mass spectrometer was applied to the analysis of a complex peptide mixture. A 2-D dual nanoscale LC-MS/MS system was compared to a conventional one. Peptides were separated with a strong cation exchange (SCX) microcolumn in the first dimension and two C18 nanocolumns were used as second dimension. MS experiments were performed using information-dependent data acquisition, where two precursor ions were selected from an enhanced MS (EMS) or an enhanced multicharged ion (EMC) as survey scan. The major benefit of EMC instead of EMS was a two-fold reduction of the data file and a 15% increase of characterized proteins. The advantage of the 2-D dual nanoscale LC-MS/MS system versus the conventional 2-D nanoscale LC-MS/MS system was reflected in the significant increase of peptides which were successfully identified within the same time frame. The first factor contributing to this increase was that the mass spectrometer was collecting twice the number of relevant MS/MS data. The second factor is the use of twice the number of SCX salt fractions in the first dimension, allowing a better sample fractionation, thereby reducing the number of peptides transferred to the second chromatographic dimension per salt fraction

    Identification of metabolites and thermal transformation products of quinolones in raw cow milk by liquid chromatography coupled to high resolution mass spectrometry.

    Get PDF
    The presence of residues of antibiotics, metabolites, and thermal transformation products (TPs), produced during thermal treatment to eliminate pathogenic microorganisms in milk, could represent a risk for people. Cow"s milk samples spiked with enrofloxacin (ENR), ciprofloxacin (CIP), difloxacin (DIF), and sarafloxacin (SAR) and milk samples from cows medicated with ENR were submitted to several thermal treatments. The milk samples were analyzed by liquid chromatography-mass spectrometry (LC-MS) to find and identify TPs and metabolites. In this work, 27 TPs of 4 quinolones and 24 metabolites of ENR were found. Some of these compounds had been reported previously, but others were characterized for the first time, including lactose-conjugated CIP, the formamidation reaction for CIP and SAR, and hydroxylation or ketone formation to produce three different isomers for all quinolones studied
    corecore