66 research outputs found

    The role of a disulfide bridge in the stability and folding kinetics of Arabidopsis thaliana cytochrome c6A

    Get PDF
    Cytochrome c 6A is a eukaryotic member of the Class I cytochrome c family possessing a high structural homology with photosynthetic cytochrome c 6 from cyanobacteria, but structurally and functionally distinct through the presence of a disulfide bond and a heme mid-point redox potential of + 71 mV (vs normal hydrogen electrode). The disulfide bond is part of a loop insertion peptide that forms a cap-like structure on top of the core α-helical fold. We have investigated the contribution of the disulfide bond to thermodynamic stability and (un)folding kinetics in cytochrome c 6A from Arabidopsis thaliana by making comparison with a photosynthetic cytochrome c 6 from Phormidium laminosum and through a mutant in which the Cys residues have been replaced with Ser residues (C67/73S). We find that the disulfide bond makes a significant contribution to overall stability in both the ferric and ferrous heme states. Both cytochromes c 6A and c 6 fold rapidly at neutral pH through an on-pathway intermediate. The unfolding rate for the C67/73S variant is significantly increased indicating that the formation of this region occurs late in the folding pathway. We conclude that the disulfide bridge in cytochrome c 6A acts as a conformational restraint in both the folding intermediate and native state of the protein and that it likely serves a structural rather than a previously proposed catalytic role. © 2011 Elsevier B.V. All rights reserved

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Institutional Labor Economics, the New Personnel Economics, and Internal Labor Markets: A Reconsideration

    Get PDF
    The author illustrates the utility of institutional labor economics and makes a case for a reconsideration of it. Two recent developments motivate this effort: the rise of New Personnel Economics (NPE) as a significant subfield of labor economics and the substantial shifts in work organization that have taken place since the 1990s. Understanding how and why firms have reorganized work opens the door for a renewed interest in institutional approaches. The author explains that the rules of institutional labor markets (ILMs) emerge from the competition between organizational interest groups—unions, personnel professionals, and the government—and competing views of firms’ objectives—resulting in the rise of ILMs, the slow diffusion of High Performance Work Systems, strategies used to obtain a high level of commitment from workers, the use of contingent employees, and the spread of new promotion rules in response to equal employment opportunity pressures. As such, the role of power and influence in establishing work rules is of central concern, though more conventional NPE considerations also remain important

    Yosef Salmon. Religion and Zionism: First Encounters

    No full text

    Data from: Females drive asymmetrical introgression from rare to common species in Darwin's tree finches

    No full text
    The consequences of hybridization for biodiversity depend on the specific ecological and evolutionary context in which it occurs. Understanding patterns of gene flow among hybridizing species is crucial for determining the evolutionary trajectories of species assemblages. The recently discovered hybridization between two species of Darwin's tree finches (Camarhynchus parvulus and C. pauper) on Floreana Island, Galápagos, presents an exciting opportunity to investigate the mechanisms causing hybridization and its potential evolutionary consequences under conditions of recent habitat disturbance and the introduction of invasive pathogens. In this study, we combine morphological and genetic analysis with pairing observations to explore the extent, direction and drivers of hybridization and to test if hybridization patterns are a result of asymmetrical pairing preference driven by females of the rarer species (C. pauper). We found asymmetrical introgression from the critically endangered, larger-bodied C. pauper to the common, smaller-bodied C. parvulus, which was associated with a lack of selection against heterospecific males by C. pauper females. Examination of pairing data showed that C. parvulus females paired assortatively while C. pauper females showed no such pattern. This study shows how sex-specific drivers can determine the direction of gene flow in hybridizing species. Furthermore, our results suggest the existence of a hybrid swarm comprised of C. parvulus and hybrid birds. We discuss the influence of interspecific abundance differences and susceptibility to the invasive parasite Philornis downsi on the observed hybridisation and recommend that the conservation of this iconic species group should be managed jointly rather than species-specific

    Developing Marking Support within Eclipse

    No full text
    In this paper, we describe marking features provided in Gild, a set of plug-ins to support education in Eclipse developed at the University of Victoria. We discuss our requirements gathering techniques, design process and the challenges experienced during development of this tool. We also consider the problematic nature of student evaluation, particularly within the context of introductory Computer Science courses

    Peters et al. MorphologyData

    No full text
    Morphological measurements of tree finches sampled on Floreana Island, Galápagos in 2004, 2005, 2006, 2008, 2010, 2012, 2013 and 2014. Techniques for measuring morphological variables are described in the associated manuscript. ‘Putative population’ refers to assignment based on morphology for exploratory analyses (see associated manuscript and supplementary material). ‘Cluster’ and ‘Membership Coefficient’ refers to population assignment based on analyses of microsatellite loci (using the program STRUCTURE)
    • …
    corecore