2,309 research outputs found

    PMC29 PATIENT REPORTED OUTCOMES RESEARCH IN A REAL TIME PRACTICE NETWORK

    Get PDF

    Potential Impacts of Climate Change on Water Resources in South Carolina and Across the United States

    Get PDF
    2008 S.C. Water Resources Conference - Addressing Water Challenges Facing the State and Regio

    Input Device Selection and Interaction Configuration with ICON

    Get PDF
    International audienceThis paper describes ICON, a novel editor designed to configure a set of input devices and connect them to actions into a graphical interactive application. ICON allows physically challenged users to connect alternative input devices and/or configure their interaction techniques according to their needs. It allows skilled users - graphic designers or musicians for example - to configure any ICON aware application to use their favorite input devices and interaction techniques (bimanual, voice enabled, etc.). ICON works with Java Swing and requires applications to describe their interaction styles in terms of ICON modules. By using ICON, users can adapt more deeply than before their applications and programmers can easily provide extensibility to their applications

    Upscaling key ecosystem functions across the conterminous United States by a water-centric ecosystem model

    Get PDF
    We developed a water-centric monthly scale simulation model (WaSSI-C) by integrating empirical water and carbon flux measurements from the FLUXNET network and an existing water supply and demand accounting model (WaSSI). The WaSSI-C model was evaluated with basin-scale evapotranspiration (ET), gross ecosystem productivity (GEP), and net ecosystem exchange (NEE) estimates by multiple independent methods across 2103 eight-digit Hydrologic Unit Code watersheds in the conterminous United States from 2001 to 2006. Our results indicate that WaSSI-C captured the spatial and temporal variability and the effects of large droughts on key ecosystem fluxes. Our modeled mean (±standard deviation in space) ET (556 ± 228 mm yr−1) compared well to Moderate Resolution Imaging Spectroradiometer (MODIS) based (527 ± 251 mm yr−1) and watershed water balance based ET (571 ± 242 mm yr−1). Our mean annual GEP estimates (1362 ± 688 g C m−2 yr−1) compared well (R2 = 0.83) to estimates (1194 ± 649 g C m−2 yr−1) by eddy flux-based EC-MOD model, but both methods led significantly higher (25–30%) values than the standard MODIS product (904 ± 467 g C m−2 yr−1). Among the 18 water resource regions, the southeast ranked the highest in terms of its water yield and carbon sequestration capacity. When all ecosystems were considered, the mean NEE (−353 ± 298 g C m−2 yr−1) predicted by this study was 60% higher than EC-MOD\u27s estimate (−220 ± 225 g C m−2 yr−1) in absolute magnitude, suggesting overall high uncertainty in quantifying NEE at a large scale. Our water-centric model offers a new tool for examining the trade-offs between regional water and carbon resources under a changing environment

    Holographic fermions in charged Gauss-Bonnet black hole

    Full text link
    We study the properties of the Green's functions of the fermions in charged Gauss-Bonnet black hole. What we want to do is to investigate how the presence of Gauss-Bonnet coupling constant α\alpha affects the dispersion relation, which is a characteristic of Fermi or non-Fermi liquid, as well as what properties such a system has, for instance, the Particle-hole (a)symmetry. One important result of this research is that we find for q=1q=1, the behavior of this system is different from that of the Landau Fermi liquid and so the system can be candidates for holographic dual of generalized non-Fermi liquids. More importantly, the behavior of this system increasingly similar to that of the Landau Fermi liquid when α\alpha is approaching its lower bound. Also we find that this system possesses the Particle-hole asymmetry when q≠0q\neq 0, another important characteristic of this system. In addition, we also investigate briefly the cases of the charge dependence.Comment: 22 pages, 6 figures; version published in JHE

    Warp-X: a new exascale computing platform for beam-plasma simulations

    Full text link
    Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such as the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. The code structure, status, early examples of applications and plans are discussed

    Rotating mesons in the presence of higher derivative corrections from gauge-string duality

    Get PDF
    We consider a rotating quark-antiquark (qqˉ)(q\bar{q}) pair in N=4\mathcal{N}=4 thermal plasma. By using AdS/CFT correspondence, the properties of this system have been investigated. We study variation of rotating string radius at the boundary as a function of the tip of U-shape string and angular velocity of rotating meson. We also extend the results to the higher derivative corrections i.e. R2{\cal{R}}^2 and R4{\cal{R}}^4 which correspond to finite coupling corrections on the rotating quark-antiquark system in the hot plasma. In R4{\cal{R}}^4 case and for fixed angular velocity as λ−1\lambda^{-1} decreases the string endpoints get more and more separated. To study R2{\cal{R}}^2 corrections, rotating quark-antiquark system in Gauss-Bonnet background has been considered. We summarize the effects of these corrections in the conclusion section.Comment: 21 pages, 11 figures, NPB version, corrections to the effects of higher derivative term

    Probing extra dimensions with higher dimensional black hole analogues?

    Full text link
    We propose that extra dimensions might be detected with higher dimensional analogues of black holes. The usual 4-dimensional acoustic(sonic)black hole metric is extended to arbitrary dimensions. The absorption cross-section of Hawking radiation on the brane and in the bulk are calculated in the semiclassical approximation.Comment: 16 pages, 5 figures; Version 2, some references adde

    The z=5 Quasar Luminosity Function from SDSS Stripe 82

    Full text link
    We present a measurement of the Type I quasar luminosity function at z=5 using a large sample of spectroscopically confirmed quasars selected from optical imaging data. We measure the bright end (M_1450<-26) with Sloan Digital Sky Survey (SDSS) data covering ~6000 deg^2, then extend to lower luminosities (M_1450<-24) with newly discovered, faint z~5 quasars selected from 235 deg^2 of deep, coadded imaging in the SDSS Stripe 82 region (the celestial equator in the Southern Galactic Cap). The faint sample includes 14 quasars with spectra obtained as ancillary science targets in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), and 59 quasars observed at the MMT and Magellan telescopes. We construct a well-defined sample of 4.7<z<5.1 quasars that is highly complete, with 73 spectroscopic identifications out of 92 candidates. Our color selection method is also highly efficient: of the 73 spectra obtained, 71 are high redshift quasars. These observations reach below the break in the luminosity function (M_1450* ~ -27). The bright end slope is steep (beta <~ -4), with a constraint of beta < -3.1 at 95% confidence. The break luminosity appears to evolve strongly at high redshift, providing an explanation for the flattening of the bright end slope reported previously. We find a factor of ~2 greater decrease in the number density of luminous quasars (M_1450<-26) from z=5 to z=6 than from z=4 to z=5, suggesting a more rapid decline in quasar activity at high redshift than found in previous surveys. Our model for the quasar luminosity function predicts that quasars generate ~30% of the ionizing photons required to keep the universe ionized at z=5.Comment: 29 pages, 22 figures, ApJ accepted (updated to published version

    On Charged Lifshitz Black Holes

    Full text link
    We obtain exact solutions of charged asymptotically Lifshitz black holes in arbitrary (d+2) dimensions, generalizing the four dimensional solution investigated in 0908.2611[hep-th]. We find that both the conventional Hamiltonian approach and the recently proposed method for defining mass in non-relativistic backgrounds do not work for this specific example. Thus the mass of the black hole can only be determined by the first law of thermodynamics. We also obtain perturbative solutions in five-dimensional Gauss-Bonnet gravity. The ratio of shear viscosity over entropy density and the DC conductivity are calculated in the presence of Gauss-Bonnet corrections.Comment: 24 pages, no figures, to appear in JHE
    • …
    corecore