2,309 research outputs found
Potential Impacts of Climate Change on Water Resources in South Carolina and Across the United States
2008 S.C. Water Resources Conference - Addressing Water Challenges Facing the State and Regio
Input Device Selection and Interaction Configuration with ICON
International audienceThis paper describes ICON, a novel editor designed to configure a set of input devices and connect them to actions into a graphical interactive application. ICON allows physically challenged users to connect alternative input devices and/or configure their interaction techniques according to their needs. It allows skilled users - graphic designers or musicians for example - to configure any ICON aware application to use their favorite input devices and interaction techniques (bimanual, voice enabled, etc.). ICON works with Java Swing and requires applications to describe their interaction styles in terms of ICON modules. By using ICON, users can adapt more deeply than before their applications and programmers can easily provide extensibility to their applications
Upscaling key ecosystem functions across the conterminous United States by a water-centric ecosystem model
We developed a water-centric monthly scale simulation model (WaSSI-C) by integrating empirical water and carbon flux measurements from the FLUXNET network and an existing water supply and demand accounting model (WaSSI). The WaSSI-C model was evaluated with basin-scale evapotranspiration (ET), gross ecosystem productivity (GEP), and net ecosystem exchange (NEE) estimates by multiple independent methods across 2103 eight-digit Hydrologic Unit Code watersheds in the conterminous United States from 2001 to 2006. Our results indicate that WaSSI-C captured the spatial and temporal variability and the effects of large droughts on key ecosystem fluxes. Our modeled mean (±standard deviation in space) ET (556 ± 228 mm yr−1) compared well to Moderate Resolution Imaging Spectroradiometer (MODIS) based (527 ± 251 mm yr−1) and watershed water balance based ET (571 ± 242 mm yr−1). Our mean annual GEP estimates (1362 ± 688 g C m−2 yr−1) compared well (R2 = 0.83) to estimates (1194 ± 649 g C m−2 yr−1) by eddy flux-based EC-MOD model, but both methods led significantly higher (25–30%) values than the standard MODIS product (904 ± 467 g C m−2 yr−1). Among the 18 water resource regions, the southeast ranked the highest in terms of its water yield and carbon sequestration capacity. When all ecosystems were considered, the mean NEE (−353 ± 298 g C m−2 yr−1) predicted by this study was 60% higher than EC-MOD\u27s estimate (−220 ± 225 g C m−2 yr−1) in absolute magnitude, suggesting overall high uncertainty in quantifying NEE at a large scale. Our water-centric model offers a new tool for examining the trade-offs between regional water and carbon resources under a changing environment
Holographic fermions in charged Gauss-Bonnet black hole
We study the properties of the Green's functions of the fermions in charged
Gauss-Bonnet black hole. What we want to do is to investigate how the presence
of Gauss-Bonnet coupling constant affects the dispersion relation,
which is a characteristic of Fermi or non-Fermi liquid, as well as what
properties such a system has, for instance, the Particle-hole (a)symmetry. One
important result of this research is that we find for , the behavior of
this system is different from that of the Landau Fermi liquid and so the system
can be candidates for holographic dual of generalized non-Fermi liquids. More
importantly, the behavior of this system increasingly similar to that of the
Landau Fermi liquid when is approaching its lower bound. Also we find
that this system possesses the Particle-hole asymmetry when , another
important characteristic of this system. In addition, we also investigate
briefly the cases of the charge dependence.Comment: 22 pages, 6 figures; version published in JHE
Warp-X: a new exascale computing platform for beam-plasma simulations
Turning the current experimental plasma accelerator state-of-the-art from a
promising technology into mainstream scientific tools depends critically on
high-performance, high-fidelity modeling of complex processes that develop over
a wide range of space and time scales. As part of the U.S. Department of
Energy's Exascale Computing Project, a team from Lawrence Berkeley National
Laboratory, in collaboration with teams from SLAC National Accelerator
Laboratory and Lawrence Livermore National Laboratory, is developing a new
plasma accelerator simulation tool that will harness the power of future
exascale supercomputers for high-performance modeling of plasma accelerators.
We present the various components of the codes such as the new Particle-In-Cell
Scalable Application Resource (PICSAR) and the redesigned adaptive mesh
refinement library AMReX, which are combined with redesigned elements of the
Warp code, in the new WarpX software. The code structure, status, early
examples of applications and plans are discussed
Rotating mesons in the presence of higher derivative corrections from gauge-string duality
We consider a rotating quark-antiquark pair in
thermal plasma. By using AdS/CFT correspondence, the properties of this system
have been investigated. We study variation of rotating string radius at the
boundary as a function of the tip of U-shape string and angular velocity of
rotating meson. We also extend the results to the higher derivative corrections
i.e. and which correspond to finite coupling
corrections on the rotating quark-antiquark system in the hot plasma. In
case and for fixed angular velocity as decreases
the string endpoints get more and more separated. To study
corrections, rotating quark-antiquark system in Gauss-Bonnet background has
been considered. We summarize the effects of these corrections in the
conclusion section.Comment: 21 pages, 11 figures, NPB version, corrections to the effects of
higher derivative term
Probing extra dimensions with higher dimensional black hole analogues?
We propose that extra dimensions might be detected with higher dimensional
analogues of black holes. The usual 4-dimensional acoustic(sonic)black hole
metric is extended to arbitrary dimensions. The absorption cross-section of
Hawking radiation on the brane and in the bulk are calculated in the
semiclassical approximation.Comment: 16 pages, 5 figures; Version 2, some references adde
The z=5 Quasar Luminosity Function from SDSS Stripe 82
We present a measurement of the Type I quasar luminosity function at z=5
using a large sample of spectroscopically confirmed quasars selected from
optical imaging data. We measure the bright end (M_1450<-26) with Sloan Digital
Sky Survey (SDSS) data covering ~6000 deg^2, then extend to lower luminosities
(M_1450<-24) with newly discovered, faint z~5 quasars selected from 235 deg^2
of deep, coadded imaging in the SDSS Stripe 82 region (the celestial equator in
the Southern Galactic Cap). The faint sample includes 14 quasars with spectra
obtained as ancillary science targets in the SDSS-III Baryon Oscillation
Spectroscopic Survey (BOSS), and 59 quasars observed at the MMT and Magellan
telescopes. We construct a well-defined sample of 4.7<z<5.1 quasars that is
highly complete, with 73 spectroscopic identifications out of 92 candidates.
Our color selection method is also highly efficient: of the 73 spectra
obtained, 71 are high redshift quasars. These observations reach below the
break in the luminosity function (M_1450* ~ -27). The bright end slope is steep
(beta <~ -4), with a constraint of beta < -3.1 at 95% confidence. The break
luminosity appears to evolve strongly at high redshift, providing an
explanation for the flattening of the bright end slope reported previously. We
find a factor of ~2 greater decrease in the number density of luminous quasars
(M_1450<-26) from z=5 to z=6 than from z=4 to z=5, suggesting a more rapid
decline in quasar activity at high redshift than found in previous surveys. Our
model for the quasar luminosity function predicts that quasars generate ~30% of
the ionizing photons required to keep the universe ionized at z=5.Comment: 29 pages, 22 figures, ApJ accepted (updated to published version
On Charged Lifshitz Black Holes
We obtain exact solutions of charged asymptotically Lifshitz black holes in
arbitrary (d+2) dimensions, generalizing the four dimensional solution
investigated in 0908.2611[hep-th]. We find that both the conventional
Hamiltonian approach and the recently proposed method for defining mass in
non-relativistic backgrounds do not work for this specific example. Thus the
mass of the black hole can only be determined by the first law of
thermodynamics. We also obtain perturbative solutions in five-dimensional
Gauss-Bonnet gravity. The ratio of shear viscosity over entropy density and the
DC conductivity are calculated in the presence of Gauss-Bonnet corrections.Comment: 24 pages, no figures, to appear in JHE
- …