34 research outputs found

    Guidelines for acute management of hyperammonemia in the Middle East region

    Get PDF
    BACKGROUND: Hyperammonemia is a life-threatening event that can occur at any age. If treated, the early symptoms in all age groups could be reversible. If untreated, hyperammonemia could be toxic and cause irreversible brain damage to the developing brain. OBJECTIVE: There are major challenges that worsen the outcome of hyperammonemic individuals in the Middle East. These include: lack of awareness among emergency department physicians about proper management of hyperammonemia, strained communication between physicians at primary, secondary, and tertiary hospitals, and shortage of the medications used in the acute management of hyperammonemia. Therefore, the urge to develop regional guidelines is extremely obvious. METHOD: We searched PubMed and Embase databases to include published materials from 2011 to 2014 that were not covered by the European guidelines, which was published in 2012. We followed the process of a Delphi conference and involved one preliminary meeting and two follow-up meetings with email exchanges between the Middle East Hyperammonemia and Urea Cycle Disorders Scientific Group regarding each draft of the manuscript. RESULTS AND DISCUSSION: We have developed consensus guidelines based on the highest available level of evidence. The aim of these guidelines is to homogenize and harmonize the treatment protocols used for patients with acute hyperammonemia, and to provide a resource to not only metabolic physicians, but also physicians who may come in contact with individuals with acute hyperammonemia. CONCLUSION: These suggested guidelines aim to ease the challenges faced by physicians dealing with acute hyperammonemia in the region. In addition, guidelines have demonstrated useful collaboration between experts in the region, and provides information that will hopefully improve the outcomes of patients with acute hyperammonemia

    Guidelines for acute management of hyperammonemia in the Middle East region

    Full text link
    BACKGROUND: Hyperammonemia is a life-threatening event that can occur at any age. If treated, the early symptoms in all age groups could be reversible. If untreated, hyperammonemia could be toxic and cause irreversible brain damage to the developing brain. OBJECTIVE: There are major challenges that worsen the outcome of hyperammonemic individuals in the Middle East. These include: lack of awareness among emergency department physicians about proper management of hyperammonemia, strained communication between physicians at primary, secondary, and tertiary hospitals, and shortage of the medications used in the acute management of hyperammonemia. Therefore, the urge to develop regional guidelines is extremely obvious. METHOD: We searched PubMed and Embase databases to include published materials from 2011 to 2014 that were not covered by the European guidelines, which was published in 2012. We followed the process of a Delphi conference and involved one preliminary meeting and two follow-up meetings with email exchanges between the Middle East Hyperammonemia and Urea Cycle Disorders Scientific Group regarding each draft of the manuscript. RESULTS AND DISCUSSION: We have developed consensus guidelines based on the highest available level of evidence. The aim of these guidelines is to homogenize and harmonize the treatment protocols used for patients with acute hyperammonemia, and to provide a resource to not only metabolic physicians, but also physicians who may come in contact with individuals with acute hyperammonemia. CONCLUSION: These suggested guidelines aim to ease the challenges faced by physicians dealing with acute hyperammonemia in the region. In addition, guidelines have demonstrated useful collaboration between experts in the region, and provides information that will hopefully improve the outcomes of patients with acute hyperammonemia

    hCALCRL mutation causes autosomal recessive nonimmune hydrops fetalis with lymphatic dysplasia

    Get PDF
    We report the first case of nonimmune hydrops fetalis (NIHF) associated with a recessive, in-frame deletion of V205 in the G protein–coupled receptor, Calcitonin Receptor-Like Receptor (hCALCRL). Homozygosity results in fetal demise from hydrops fetalis, while heterozygosity in females is associated with spontaneous miscarriage and subfertility. Using molecular dynamic modeling and in vitro biochemical assays, we show that the hCLR(V205del) mutant results in misfolding of the first extracellular loop, reducing association with its requisite receptor chaperone, receptor activity modifying protein (RAMP), translocation to the plasma membrane and signaling. Using three independent genetic mouse models we establish that the adrenomedullin–CLR–RAMP2 axis is both necessary and sufficient for driving lymphatic vascular proliferation. Genetic ablation of either lymphatic endothelial Calcrl or nonendothelial Ramp2 leads to severe NIHF with embryonic demise and placental pathologies, similar to that observed in humans. Our results highlight a novel candidate gene for human congenital NIHF and provide structure–function insights of this signaling axis for human physiology

    What is the right sequencing approach? Solo VS extended family analysis in consanguineous populations.

    Get PDF
    Testing strategies is crucial for genetics clinics and testing laboratories. In this study, we tried to compare the hit rate between solo and trio and trio plus testing and between trio and sibship testing. Finally, we studied the impact of extended family analysis, mainly in complex and unsolved cases. Three cohorts were used for this analysis: one cohort to assess the hit rate between solo, trio and trio plus testing, another cohort to examine the impact of the testing strategy of sibship genome vs trio-based analysis, and a third cohort to test the impact of an extended family analysis of up to eight family members to lower the number of candidate variants. The hit rates in solo, trio and trio plus testing were 39, 40, and 41%, respectively. The total number of candidate variants in the sibship testing strategy was 117 variants compared to 59 variants in the trio-based analysis. We noticed that the average number of coding candidate variants in trio-based analysis was 1192 variants and 26,454 noncoding variants, and this number was lowered by 50-75% after adding additional family members, with up to two coding and 66 noncoding homozygous variants only, in families with eight family members. There was no difference in the hit rate between solo and extended family members. Trio-based analysis was a better approach than sibship testing, even in a consanguineous population. Finally, each additional family member helped to narrow down the number of variants by 50-75%. Our findings could help clinicians, researchers and testing laboratories select the most cost-effective and appropriate sequencing approach for their patients. Furthermore, using extended family analysis is a very useful tool for complex cases with novel genes

    Inhibition of G-protein signalling in cardiac dysfunction of intellectual developmental disorder with cardiac arrhythmia (IDDCA) syndrome

    Get PDF
    Background: Pathogenic variants of GNB5 encoding the ÎČ5 subunit of the guanine nucleotide-binding protein cause IDDCA syndrome, an autosomal recessive neurodevelopmental disorder associated with cognitive disability and cardiac arrhythmia, particularly severe bradycardia. Methods: We used echocardiography and telemetric ECG recordings to investigate consequences of Gnb5 loss in mouse. Results: We delineated a key role of Gnb5 in heart sinus conduction and showed that Gnb5-inhibitory signalling is essential for parasympathetic control of heart rate (HR) and maintenance of the sympathovagal balance. Gnb5-/- mice were smaller and had a smaller heart than Gnb5+/+ and Gnb5+/-, but exhibited better cardiac function. Lower autonomic nervous system modulation through diminished parasympathetic control and greater sympathetic regulation resulted in a higher baseline HR in Gnb5-/- mice. In contrast, Gnb5-/- mice exhibited profound bradycardia on treatment with carbachol, while sympathetic modulation of the cardiac stimulation was not altered. Concordantly, transcriptome study pinpointed altered expression of genes involved in cardiac muscle contractility in atria and ventricles of knocked-out mice. Homozygous Gnb5 loss resulted in significantly higher frequencies of sinus arrhythmias. Moreover, we described 13 affected individuals, increasing the IDDCA cohort to 44 patients. Conclusions: Our data demonstrate that loss of negative regulation of the inhibitory G-protein signalling causes HR perturbations in Gnb5-/- mice, an effect mainly driven by impaired parasympathetic activity. We anticipate that unravelling the mechanism of Gnb5 signalling in the autonomic control of the heart will pave the way for future drug screening

    Early-infantile onset epilepsy and developmental delay caused by bi-allelic GAD1 variants.

    Get PDF
    Gamma-aminobutyric acid (GABA) and glutamate are the most abundant amino acid neurotransmitters in the brain. GABA, an inhibitory neurotransmitter, is synthesized by glutamic acid decarboxylase (GAD). Its predominant isoform GAD67, contributes up to ∌90% of base-level GABA in the CNS, and is encoded by the GAD1 gene. Disruption of GAD1 results in an imbalance of inhibitory and excitatory neurotransmitters, and as Gad1-/- mice die neonatally of severe cleft palate, it has not been possible to determine any potential neurological dysfunction. Furthermore, little is known about the consequence of GAD1 disruption in humans. Here we present six affected individuals from six unrelated families, carrying bi-allelic GAD1 variants, presenting with developmental and epileptic encephalopathy, characterized by early-infantile onset epilepsy and hypotonia with additional variable non-CNS manifestations such as skeletal abnormalities, dysmorphic features and cleft palate. Our findings highlight an important role for GAD1 in seizure induction, neuronal and extraneuronal development, and introduce GAD1 as a new gene associated with developmental and epileptic encephalopathy

    Heterozygous mutation in SLC36A2 gene causing hyperglycinuria and nephrolithiasis

    No full text
    Background: Childhood nephrolithiasis cases reported worldwide has been increasing over the last decade. The majority of cases reported are related to calcium oxalate formation which results in impairment of glycine transport in the renal tubule leading to hyperglycinuria and impaired urinary oxalate excretion with resultant nephrolithiasis. Case presentation: A 4-year-old boy was presented with oxalate nephrolithiasis and hyperglycinuria. Molecular testing confirmed a c.448G>A p. (Val150Met) mutation of heterozygous status in SLC36A2 gene. Conclusion: The likelihood of cases being reported with renal hyperglycinuria along with oxalate nephrolithiasis is very rare. The present study reports a patient presented with oxalate nephrolithiasis, hyperglycinuria and a molecular confirmation for a heterozygous c.448G>A p. (Val150Met) mutation in SLC36A2 gene. [JBCGenetics 2019; 2(1.000): 74-76

    Continues supernumerary teeth development in cleidocranial dysplasia post-surgical extraction – A novel case report

    No full text
    The diagnosis of Cleidocranial dysplasia is approached via clinical features, genetic testing, and imaging. CCD includes delayed or non-closure of cranial sutures the presence of bulging anterior fontanelle and multiple supernumerary teeth. We report two twin sisters presenting all CCD characteristics but surprisingly post-extraction of supernumerary teeth they both developed newly formed dental buds
    corecore