12 research outputs found

    Validation of a DNA methylation microarray for 285,000 CpG sites in the mouse genome

    Get PDF
    Mouse has been extensively used as a model organism in many studies to characterize biological pathways and drug effects and to mimic human diseases. Similar DNA sequences between both species facilitate these types of experiments. However, much less is known about the mouse epigenome, particularly for DNA methylation. Progress in delivering mouse DNA methylomes has been slow due to the currently available time-consuming and expensive methodologies. Following the great acceptance of the human DNA methylation microarrays, we have herein validated a newly developed DNA methylation microarray (Infinium Mouse Methylation BeadChip) that interrogates 280,754 unique CpG sites within the mouse genome. The CpGs included in the platform cover CpG Islands, shores, shelves and open sea sequences, and loci surrounding transcription start sites and gene bodies. From a functional standpoint, mouse ENCODE representative DNase hypersensitivity sites (rDHSs) and candidate cis-Regulatory Elements (cCREs) are also included. Herein, we show that the profiled mouse DNA methylation microarray provides reliable values among technical replicates; matched results from fresh frozen versus formalin-fixed samples; detects hemimethylated X-chromosome and imprinted CpG sites; and is able to determine CpG methylation changes in mouse cell lines treated with a DNA demethylating agent or upon genetic disruption of a DNA methyltransferase. Most important, using unsupervised hierarchical clustering and t-SNE approaches, the platform is able to classify all types of normal mouse tissues and organs. These data underscore the great features of the assessed microarray to obtain comprehensive DNA methylation profiles of the mouse genome.We thank the CERCA Programme/Generalitat de Catalunya for institutional support. This work was supported by the Health Department PERIS-project no. SLT/002/16/00374 and AGAUR-project no. 2017SGR1080 of the Catalan Government (Generalitat de Catalunya); Ministerio de Ciencia e Innovación (MCI), Agencia Estatal de Investigación (AEI), and European Regional Development Fund (ERDF) project no. RTI2018-094049-B-I00 and PID2020-117284RB-I00; the Cellex Foundation; Marie Sklodowska-Curie Fellowship no. 895979 from the European Commission (BNV); and ‘la Caixa’ Banking Foundation (LCF/PR/GN18/51140001).Peer ReviewedPostprint (published version

    Epigenetic homogeneity within colorectal tumors predicts shorter relapse-free and overall survival times for patients with locoregional cancer

    Get PDF
    Background & aims: there are few validated biomarkers that can be used to predict outcomes for patients with colorectal cancer. Part of the challenge is the genetic and molecular heterogeneity of colorectal tumors not only among patients, but also within tumors. We have explored intratumor heterogeneity at the epigenetic level, due to its dynamic nature. We analyzed DNA methylation profiles of the digestive tract surface and the central bulk and invasive front regions of colorectal tumors. Methods: we determined the DNA methylation profiles of >450,000 CpG sites in 3 macrodissected regions of 79 colorectal tumors and 23 associated liver metastases, obtained from 2 hospitals in Spain. We also analyzed samples for KRAS and BRAF mutations, 499,170 single nucleotide polymorphisms, and performed immunohistochemical analyses. Results: we observed differences in DNA methylation among the 3 tumor sections; regions of tumor−host interface differed the most from the other tumor sections. Interestingly, tumor samples collected from areas closer to the gastrointestinal transit most frequently shared methylation events with metastases. When we calculated individual coefficients to quantify heterogeneity, we found that epigenetic homogeneity was significantly associated with short time of relapse-free survival (log-rank P = .037) and short time of overall survival (log-rank P = .026) in patients with locoregional colorectal cancer. Conclusions: in an analysis of 79 colorectal tumors, we found significant heterogeneity in patterns of DNA methylation within each tumor; the level of heterogeneity correlates with times of relapse-free and overall survival

    MacroH2A1 regulates the balance between self-renewal and differentiation commitment in embryonic and adult stem cells.

    Full text link
    One of the most striking epigenetic alterations that occurs at the level of the nucleosome is the complete exchange of the canonical H2A histones for the macroH2A variant. Here, we provide insight into the poorly recognized function of macroH2A in transcriptional activation and demonstrate its relevance in embryonic and adult stem cells. Knockdown of macroH2A1 in mouse embryonic stem (mES) cells limited their capacity to differentiate but not their self-renewal. The loss of macroH2A1 interfered with the proper activation of differentiation genes, most of which are direct target genes of macroH2A. Additionally, macroH2A1-deficient mES cells displayed incomplete inactivation of pluripotency genes and formed defective embryoid bodies. In vivo, macroH2A1-deficient teratomas contained a massive expansion of malignant, undifferentiated carcinoma tissue. In the heterogeneous culture of primary human keratinocytes, macroH2A1 levels negatively correlated with the self-renewal capacity of the pluripotent compartment. Together these results establish macroH2A1 as a critical chromatin component that regulates the delicate balance between self-renewal and differentiation of embryonic and adult stem cells

    Tumour Cell Seeding to Lymph Nodes from In Situ Colorectal Cancer

    No full text
    Lymph node (LN) metastasis is an important prognostic factor in colorectal cancer (CRC). We aimed to demonstrate the presence of lymphatic vessels (LV) in the mucosa of in-situ (pTis) CRC, and of detectable tumour burden in regional LNs. This is an observational retrospective study of 39 surgically resected in situ CRCs. The number of LVs was evaluated in both pTis and normal mucosa using D2-40 immunostains. All LNs were assessed with both H&E and the One Step Nucleic Acid Amplification (OSNA) assay, and the results were correlated with clinicopathological features. D2-40 immunohistochemisty revealed LVs in the lamina propria of all pTis CRC (100%), being absent in normal mucosa. A median of 16 LNs were freshly dissected per patient, and all cases were pN0 with H&E. Molecular LN analysis with OSNA revealed the presence of low amounts of tumour burden in 11/39 (28%) cases (range 400 to 4270 CK19 mRNA copies/µL), which had no clinical consequences. This study demonstrates the presence of LVs in the lamina propria in 100% of pTis CRC, as well as the presence of low amounts of tumour burden in regional LNs, only detected by molecular methods. Given the prognostic value of LN tumour burden, its molecular quantification may help a patient’s clinical management

    Tumour Cell Seeding to Lymph Nodes from In Situ Colorectal Cancer

    No full text
    Lymph node (LN) metastasis is an important prognostic factor in colorectal cancer (CRC). We aimed to demonstrate the presence of lymphatic vessels (LV) in the mucosa of in-situ (pTis) CRC, and of detectable tumour burden in regional LNs. This is an observational retrospective study of 39 surgically resected in situ CRCs. The number of LVs was evaluated in both pTis and normal mucosa using D2-40 immunostains. All LNs were assessed with both H&E and the One Step Nucleic Acid Amplification (OSNA) assay, and the results were correlated with clinicopathological features. D2-40 immunohistochemisty revealed LVs in the lamina propria of all pTis CRC (100%), being absent in normal mucosa. A median of 16 LNs were freshly dissected per patient, and all cases were pN0 with H&E. Molecular LN analysis with OSNA revealed the presence of low amounts of tumour burden in 11/39 (28%) cases (range 400 to 4270 CK19 mRNA copies/µL), which had no clinical consequences. This study demonstrates the presence of LVs in the lamina propria in 100% of pTis CRC, as well as the presence of low amounts of tumour burden in regional LNs, only detected by molecular methods. Given the prognostic value of LN tumour burden, its molecular quantification may help a patient’s clinical management

    Epigenetic homogeneity within colorectal tumors predicts shorter relapse-free and overall survival times for patients with locoregional cancer

    No full text
    Background & aims: there are few validated biomarkers that can be used to predict outcomes for patients with colorectal cancer. Part of the challenge is the genetic and molecular heterogeneity of colorectal tumors not only among patients, but also within tumors. We have explored intratumor heterogeneity at the epigenetic level, due to its dynamic nature. We analyzed DNA methylation profiles of the digestive tract surface and the central bulk and invasive front regions of colorectal tumors. Methods: we determined the DNA methylation profiles of >450,000 CpG sites in 3 macrodissected regions of 79 colorectal tumors and 23 associated liver metastases, obtained from 2 hospitals in Spain. We also analyzed samples for KRAS and BRAF mutations, 499,170 single nucleotide polymorphisms, and performed immunohistochemical analyses. Results: we observed differences in DNA methylation among the 3 tumor sections; regions of tumor−host interface differed the most from the other tumor sections. Interestingly, tumor samples collected from areas closer to the gastrointestinal transit most frequently shared methylation events with metastases. When we calculated individual coefficients to quantify heterogeneity, we found that epigenetic homogeneity was significantly associated with short time of relapse-free survival (log-rank P = .037) and short time of overall survival (log-rank P = .026) in patients with locoregional colorectal cancer. Conclusions: in an analysis of 79 colorectal tumors, we found significant heterogeneity in patterns of DNA methylation within each tumor; the level of heterogeneity correlates with times of relapse-free and overall survival

    Epigenetic Inactivation of the BRCA1 Interactor SRBC and Resistance to Oxaliplatin in Colorectal Cancer

    Get PDF
    BACKGROUND: A major problem in cancer chemotherapy is the existence of primary resistance and/or the acquisition of secondary resistance. Many cellular defects contribute to chemoresistance, but epigenetic changes can also be a cause. METHODS: A DNA methylation microarray was used to identify epigenetic differences in oxaliplatin-sensitive and -resistant colorectal cancer cells. The candidate gene SRBC was validated by single-locus DNA methylation and expression techniques. Transfection and short hairpin experiments were used to assess oxaliplatin sensitivity. Progression-free survival (PFS) and overall survival (OS) in metastasic colorectal cancer patients were explored with Kaplan-Meier and Cox regression analyses. All statistical tests were two-sided. RESULTS: We found that oxaliplatin resistance in colorectal cancer cells depends on the DNA methylation-associated inactivation of the BRCA1 interactor SRBC gene. SRBC overexpression or depletion gives rise to sensitivity or resistance to oxaliplatin, respectively. SRBC epigenetic inactivation occurred in primary tumors from a discovery cohort of colorectal cancer patients (29.8%; n = 39 of 131), where it predicted shorter PFS (hazard ratio [HR] = 1.83; 95% confidence interval [CI] = 1.15 to 2.92; log-rank P = .01), particularly in oxaliplatin-treated case subjects for which metastasis surgery was not indicated (HR = 1.96; 95% CI = 1.13 to 3.40; log-rank P = .01). In a validation cohort of unresectable colorectal tumors treated with oxaliplatin (n = 58), SRBC hypermethylation was also associated with shorter PFS (HR = 1.90; 95% CI = 1.01 to 3.60; log-rank P = .045). CONCLUSIONS: These results provide a basis for future clinical studies to validate SRBC hypermethylation as a predictive marker for oxaliplatin resistance in colorectal cancer

    Epigenetic Inactivation of the BRCA1 Interactor SRBC and Resistance to Oxaliplatin in Colorectal Cancer

    No full text
    BACKGROUND: A major problem in cancer chemotherapy is the existence of primary resistance and/or the acquisition of secondary resistance. Many cellular defects contribute to chemoresistance, but epigenetic changes can also be a cause. METHODS: A DNA methylation microarray was used to identify epigenetic differences in oxaliplatin-sensitive and -resistant colorectal cancer cells. The candidate gene SRBC was validated by single-locus DNA methylation and expression techniques. Transfection and short hairpin experiments were used to assess oxaliplatin sensitivity. Progression-free survival (PFS) and overall survival (OS) in metastasic colorectal cancer patients were explored with Kaplan-Meier and Cox regression analyses. All statistical tests were two-sided. RESULTS: We found that oxaliplatin resistance in colorectal cancer cells depends on the DNA methylation-associated inactivation of the BRCA1 interactor SRBC gene. SRBC overexpression or depletion gives rise to sensitivity or resistance to oxaliplatin, respectively. SRBC epigenetic inactivation occurred in primary tumors from a discovery cohort of colorectal cancer patients (29.8%; n = 39 of 131), where it predicted shorter PFS (hazard ratio [HR] = 1.83; 95% confidence interval [CI] = 1.15 to 2.92; log-rank P = .01), particularly in oxaliplatin-treated case subjects for which metastasis surgery was not indicated (HR = 1.96; 95% CI = 1.13 to 3.40; log-rank P = .01). In a validation cohort of unresectable colorectal tumors treated with oxaliplatin (n = 58), SRBC hypermethylation was also associated with shorter PFS (HR = 1.90; 95% CI = 1.01 to 3.60; log-rank P = .045). CONCLUSIONS: These results provide a basis for future clinical studies to validate SRBC hypermethylation as a predictive marker for oxaliplatin resistance in colorectal cancer

    Una revisión sistemática de las recomendaciones diagnósticas y terapéuticas del panel de expertos en cáncer de origen desconocido

    No full text
    Cancer of Unknown Primary (CUP) is a metastatic cancer with confirmed histology of which the primary origin is unknown after to work up initial evaluation through a pathological clinical study, the analytical and imaging study. The diagnostic process includes the early obtaining of quality biopsy material. It includes its histological and immunohistochemical analysis: a study to determine the tumor line, an analysis of cytokeratins and a large battery of antibodies to confirm the specific origin of each possible tumor type. The development of molecular platforms has allowed improving the diagnosis of CUP, increasing the number of patients who can benefit from treatment with specific therapy, significantly increasing the survival and reducing the toxicity. However, the updated guidelines (NICE, ESMO, NCCN) emphasize that the impact on the clinical benefit of the specific treatment according to the results of the molecular platforms is still controversial.El Cáncer de Origen Desconocido (COD) es un cáncer metastásico con histología confirmada del cual se desconoce el origen primario después de realizar un estudio diagnóstico inicial mediante el estudio clínico patológico, el estudio analítico y de imagen. El estudio diagnóstico incluye la obtención precoz de material de biopsia de calidad. Incluye su análisis histológico e inmunohistoquímico: un estudio para determinar la estirpe tumoral, análisis de citoqueratinas y una batería amplia de anticuerpos para confirmar el origen específico. El desarrollo de plataformas moleculares ha mejorado su diagnóstico, incrementando el número de pacientes que se benefician del tratamiento con terapia específica, aumentando su supervivencia y reduciendo la toxicidad. Sin embargo, las guías actualizadas (NICE, ESMO, NCCN) destacan que el impacto en el beneficio clínico del tratamiento específico según los resultados de las plataformas moleculares es todavía controvertido
    corecore