35 research outputs found

    Evaluation of flight parameters during approach and landing phases by applying principal component analysis

    Get PDF
    This paper adopts an unsupervised learning technique, Principal Component Analysis (PCA) to analyze flight data. While the flight parameters for a stable approach have been established for a while, the paper reevaluates these flight parameters using PCA for a set of airports across the United States of America. Some flight parameters were found to be more sensitive to some airports. The parameters have been cross-checked with experts in the industry to better interpret their significance.peer-reviewe

    Literature review of machine learning techniques to analyse flight data

    Get PDF
    This paper analyses the increasing trend of using modern machine learning technologies to analyze flight data efficiently. Flight data offers an important insight into the operations of an aircraft. This paper reviews the research undertaken so far on the use of Machine Learning techniques for the analyses of flight data by evaluating various anomaly detection algorithms and the significance of feature selection in Flight Data Monitoring. These algorithms are compared to determine the best class of algorithms for highlighting significant flight anomalies. Furthermore, these algorithms are analyzed for various flight data parameters to determine which class of algorithms is sensitive to continuous parameters and which is sensitive to discrete parameters of flight data. The paper also addresses the ability of each anomaly detection algorithm to be easily adaptable to different datasets and different phases of flight, including take-off and landing.peer-reviewe

    Hybrid machine learning–statistical method for anomaly detection in flight data

    Get PDF
    This paper investigates the use of an unsupervised hybrid statistical–local outlier factor algorithm to detect anomalies in time-series flight data. Flight data analysis is an activity carried out by airlines primarily as a means of improving the safety and operation of their fleet. Traditionally, this is performed by checking exceedances in pre-set limits to the flight data parameters. However, this method highlights single events during a flight, making this analysis laborious. The process also fails to establish trends or reflect potential unknown hazards. This research took advantage of machine learning techniques to recognize patterns in large datasets by implementing the local outlier factor (LOF). In order to minimize human input, a statistical approach was adopted to establish the threshold value above which the flights are considered to be anomalous and interpret the scores. This paper shows that LOF quantifies the degree of outlier-ness of an outlier rather than binary categorizing a point into inlier or outlier, as in the case of clustering algorithms. Thus, with LOF, for the first time, we demonstrated that in the aviation industry, anomalous flights could not only be identified but also be given an anomaly score to compare two anomalous flights in an unsupervised manner. Furthermore, LOF helps to track anomalous behavior in time during the flight. This is insightful when a flight is abnormal, only for some seconds or short duration. For the first time, we attempted to detect flight parameters responsible for anomalous behavior or at least give direction to human experts looking for the cause of abnormal behavior. This was all analyzed with real-life flight data in an unsupervised manner in contrast to simulated data.peer-reviewe

    A quasi-real-time ground-based trajectory optimization tool for greener operations

    Get PDF
    This paper describes the methodology adopted in designing a quasi-real-time ground-based trajectory optimization tool for use by air traffic control officers. The tool is primarily intended for the optimization of aircraft trajectories during the climb and descent phases in which the user can define the trajectory in four dimensions. The optimized trajectories would then contribute to a reduction in fuel burn and emissions. The designed tool takes into account different aircraft types and sub-types through BADA performance and engine coefficients. A simple case study for an approach in Malta International Airport has also been presented to illustrate the use of the tool.peer-reviewe

    A proposal for revised approaches and procedures to Malta International Airport

    Get PDF
    Malta International Airport (ICAO code LMML) has four runways organized in T-format. The longer two are usually used by commercial aircraft since they are equipped with an Intrument Landing System and are facing local prevailing winds. The shorter two are mainly used for general aviation and for commercial airport adopting visual flight rules. Conventional procedures to and from the airfield are published in the Aeronautical Information Package, and include Standard Instrument Departures, instrument T-bar approach charts and other visual charts. However, no Standard Terminal Arrival Routes to connect inbound fixes to initial approach fixes or equivalent waypoints are available. This paper describes in detail the methodologies adopted in designing revised SIDs, STARs and associated procedures aimed at introducing optimal approaches and departures from LMML for the reduction of greenhouse gases in Maltese airspace. The resulting procedures for runway 13, which is the most heavily used runway by commercial aircraft, are presented, analyzed and discussed.peer-reviewe

    Concept of operations of an ATC tool for trajectory optimisation

    Get PDF
    In this paper, a detailed Concept of Operations (Con-Ops) associated with a trajectory optimisation tool is presented. Operational scenarios are included for both climb and descent phases. The paper also includes a description of the tests used to assess the Con-Ops and the ATC tool. Finally, an overview of the safety assessment procedure to be carried out for the Con-Ops is provided.peer-reviewe

    Searching biomedical databases on complementary medicine: the use of controlled vocabulary among authors, indexers and investigators

    Get PDF
    BACKGROUND: The optimal retrieval of a literature search in biomedicine depends on the appropriate use of Medical Subject Headings (MeSH), descriptors and keywords among authors and indexers. We hypothesized that authors, investigators and indexers in four biomedical databases are not consistent in their use of terminology in Complementary and Alternative Medicine (CAM). METHODS: Based on a research question addressing the validity of spinal palpation for the diagnosis of neuromuscular dysfunction, we developed four search concepts with their respective controlled vocabulary and key terms. We calculated the frequency of MeSH, descriptors, and keywords used by authors in titles and abstracts in comparison to standard practices in semantic and analytic indexing in MEDLINE, MANTIS, CINAHL, and Web of Science. RESULTS: Multiple searches resulted in the final selection of 38 relevant studies that were indexed at least in one of the four selected databases. Of the four search concepts, validity showed the greatest inconsistency in terminology among authors, indexers and investigators. The use of spinal terms showed the greatest consistency. Of the 22 neuromuscular dysfunction terms provided by the investigators, 11 were not contained in the controlled vocabulary and six were never used by authors or indexers. Most authors did not seem familiar with the controlled vocabulary for validity in the area of neuromuscular dysfunction. Recently, standard glossaries have been developed to assist in the research development of manual medicine. CONCLUSIONS: Searching biomedical databases for CAM is challenging due to inconsistent use of controlled vocabulary and indexing procedures in different databases. A standard terminology should be used by investigators in conducting their search strategies and authors when writing titles, abstracts and submitting keywords for publications

    The seventh national communication of Malta under the United Nations framework convention on climate change

    Get PDF
    This is the fourth time that Malta is submitting a National Communication under the United Nations Framework Convention on Climate Change (UNFCCC), following the submission of a First National Communication in 2004 and a Second National Communication in 2010. This is also the second time that Malta is submitting such a Communication since its accession to Annex I status under the Convention, the first two submissions having been made as a non-Annex I Party. Emission reduction or limitation commitments applicable to Malta Malta’s status under the Convention up to the time it applied for accession to Annex I, and with that accession being conditional to not taking on quantified emission limitation or reduction targets for the first commitment period of the Kyoto Protocol, meant that until 2012 Malta was not subject to an economy-wide greenhouse gas related obligation under the Protocol. This however did not mean that Malta had no obligations to limit or reduce emissions from anthropogenic activities taking place in the country. In line with, Malta will be contributing its fair share of the EU’s unconditional commitment under the Convention to reduce emissions by 20% below 1990 levels by 2020. This is in line with the target inscribed in the amendments to the Kyoto Protocol (the Doha Amendments), that will be jointly fulfilling the second commitment period with the other Union member states; therefore, emissions from the aforementioned power plants remain subject to compliance with EU Emissions Trading Scheme provisions, while the Effort-Sharing Decision target is the principal emissions mitigation obligation that the country has until 2020, for all other greenhouse gas emissions. The major point sources of greenhouse gas emissions in Malta, namely the electricity generation plants have been, since of 2005, subject to the EU Emissions Trading Scheme, whereby they are required to surrender allowances in respect of emissions of carbon dioxide. Emissions of greenhouse gases not covered by the EU Emissions Trading Scheme, are subject to an overall limit under the so-called Effort-Sharing Decision. Under this decision, Malta must limit such greenhouse gases to not more than 5% over emission levels in 2005, by 2020. The EU is already looking towards the longer-term future, with the 2030 climate and energy framework providing for a 40% domestic reduction target for 2030. Legislative implementation of this goal is currently under discussion at EU level.peer-reviewe

    Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. Methods The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODErn), to generate cause fractions and cause specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised. Findings At the broadest grouping of causes of death (Level 1), non-communicable diseases (NC Ds) comprised the greatest fraction of deaths, contributing to 73.4% (95% uncertainty interval [UI] 72.5-74.1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional (CMNN) causes accounted for 186% (17.9-19.6), and injuries 8.0% (7.7-8.2). Total numbers of deaths from NCD causes increased from 2007 to 2017 by 22.7% (21.5-23.9), representing an additional 7.61 million (7. 20-8.01) deaths estimated in 2017 versus 2007. The death rate from NCDs decreased globally by 7.9% (7.08.8). The number of deaths for CMNN causes decreased by 222% (20.0-24.0) and the death rate by 31.8% (30.1-33.3). Total deaths from injuries increased by 2.3% (0-5-4-0) between 2007 and 2017, and the death rate from injuries decreased by 13.7% (12.2-15.1) to 57.9 deaths (55.9-59.2) per 100 000 in 2017. Deaths from substance use disorders also increased, rising from 284 000 deaths (268 000-289 000) globally in 2007 to 352 000 (334 000-363 000) in 2017. Between 2007 and 2017, total deaths from conflict and terrorism increased by 118.0% (88.8-148.6). A greater reduction in total deaths and death rates was observed for some CMNN causes among children younger than 5 years than for older adults, such as a 36.4% (32.2-40.6) reduction in deaths from lower respiratory infections for children younger than 5 years compared with a 33.6% (31.2-36.1) increase in adults older than 70 years. Globally, the number of deaths was greater for men than for women at most ages in 2017, except at ages older than 85 years. Trends in global YLLs reflect an epidemiological transition, with decreases in total YLLs from enteric infections, respirator}, infections and tuberculosis, and maternal and neonatal disorders between 1990 and 2017; these were generally greater in magnitude at the lowest levels of the Socio-demographic Index (SDI). At the same time, there were large increases in YLLs from neoplasms and cardiovascular diseases. YLL rates decreased across the five leading Level 2 causes in all SDI quintiles. The leading causes of YLLs in 1990 neonatal disorders, lower respiratory infections, and diarrhoeal diseases were ranked second, fourth, and fifth, in 2017. Meanwhile, estimated YLLs increased for ischaemic heart disease (ranked first in 2017) and stroke (ranked third), even though YLL rates decreased. Population growth contributed to increased total deaths across the 20 leading Level 2 causes of mortality between 2007 and 2017. Decreases in the cause-specific mortality rate reduced the effect of population growth for all but three causes: substance use disorders, neurological disorders, and skin and subcutaneous diseases. Interpretation Improvements in global health have been unevenly distributed among populations. Deaths due to injuries, substance use disorders, armed conflict and terrorism, neoplasms, and cardiovascular disease are expanding threats to global health. For causes of death such as lower respiratory and enteric infections, more rapid progress occurred for children than for the oldest adults, and there is continuing disparity in mortality rates by sex across age groups. Reductions in the death rate of some common diseases are themselves slowing or have ceased, primarily for NCDs, and the death rate for selected causes has increased in the past decade. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2\ub75th percentile and 100 as the 97\ub75th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59\ub74 (IQR 35\ub74–67\ub73), ranging from a low of 11\ub76 (95% uncertainty interval 9\ub76–14\ub70) to a high of 84\ub79 (83\ub71–86\ub77). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030
    corecore