80 research outputs found

    Hybrid inorganic/organic photonic crystal biochips for cancer biomarkers detection

    Get PDF
    We report on hybrid inorganic/organic one-dimensional photonic crystal biochips sustaining Bloch surface waves. The biochips were used, together with an optical platform operating in a label-free and fluorescence configuration simultaneously, to detect the cancer biomarker Angiopoietin 2 in a protein base buffer. The hybrid photonic crystals embed in their geometry a thin functionalization poly-acrylic acid layer deposited by plasma polymerization, which is used to immobilize a monoclonal antibody for highly specific biological recognition. The fluorescence operation mode is described in detail, putting into evidence the role of field enhancement and localization at the photonic crystal surface in the shaping and intensification of the angular fluorescence pattern. In the fluorescence operation mode, the hybrid biochips can attain the limit of detection 6 ng/ml.We report on hybrid inorganic/organic one-dimensional photonic crystal biochips sustaining Bloch surface waves. The biochips were used, together with an optical platform operating in a label-free and fluorescence configuration simultaneously, to detect the cancer biomarker Angiopoietin 2 in a protein base buffer. The hybrid photonic crystals embed in their geometry a thin functionalization poly-acrylic acid layer deposited by plasma polymerization, which is used to immobilize a monoclonal antibody for highly specific biological recognition. The fluorescence operation mode is described in detail, putting into evidence the role of field enhancement and localization at the photonic crystal surface in the shaping and intensification of the angular fluorescence pattern. In the fluorescence operation mode, the hybrid biochips can attain the limit of detection 6 ng/ml

    Design rules for combined label-free and fluorescence Bloch surface wave biosensors

    Get PDF
    We report on the fabrication and physical characterization of optical biosensors implementing simultaneous label-free and fluorescence detection and taking advantage of the excitation of Bloch surface waves at a photonic crystal’s truncation interface. Two types of purposely-designed one dimensional photonic crystals on molded organic substrates with micro-optics were fabricated. These feature either high or low finesse of the Bloch surface wave resonances and were tested on the same optical readout system. The experimental results show that designing biochips with a large resonance quality factor does not necessarily lead in the real case to an improvement of the biosensor performance. Conditions for optimal biochips’ design and operation of the complete bio-sensing platform are established

    The conventional wisdom about tactical voting is wrong

    Get PDF
    Have you ever voted for another party because you felt that your party had no chance of winning the seat? If yes, then you might be among the 5 to 10 per cent of tactical voters. In this article, Michael Herrmann, Simon Munzert, and Peter Selb explain how, contrary to popular belief, the Liberal Democrats were the big winners of tactical voting in 1997 and 2001

    Spectral analysis of organic LED emitters’ orientation in thin layers by resonant emission on dielectric stacks

    Get PDF
    Purposely tailored thin film stacks sustaining surface waves have been utilized to create a unique link between emission angle and wavelength of fluorescent dye molecules. The knowledge of the thin film stack’s properties allows us to derive the intrinsically emitted luminescence spectrum as well as to gain information about the orientation of fluorophores from angularly resolved experiments. This corresponds to replacing all the equipment necessary for polarized spectroscopy with a single smart thin film stack, potentially enabling single shot analyses in the future. The experimental results agree well with those from other established techniques, when analyzing the Rubrene derivative in a 2,4,6-tris(biphenyl-3-yl)-1,3,5-triazine (T2T) host used for the fabrication of optimized organic light-emitting diodes. The findings illustrate how resonant layered stacks can be applied to integrated spectroscopic analyses

    Spectrophotometric Characterization of Thin Semi-Transparent Aluminum Films Prepared by Electron Beam Evaporation and Magnetron Sputtering

    Get PDF
    Aluminum thin films with thicknesses between approximately 10 and 60 nm have been deposited by evaporation and sputtering techniques. Layer characterization focused on reflectance, optical constants, and surface quality. Reflectance fits have been performed using a merger of three standard dispersion models, namely the Drude model, the Lorentzian oscillator model, and the beta-distributed oscillator model. A thickness dependence of the optical constants could be established in the investigated thickness range

    Terahertz ratchet effects in graphene with a lateral superlattice

    Get PDF
    Experimental and theoretical studies on ratchet effects in graphene with a lateral superlattice excited by alternating electric fields of terahertz frequency range are presented. A lateral superlattice deposited on top of monolayer graphene is formed either by periodically repeated metal stripes having different widths and spacings or by interdigitated comblike dual-grating-gate (DGG) structures. We show that the ratchet photocurrent excited by terahertz radiation and sensitive to the radiation polarization state can be efficiently controlled by the back gate driving the system through the Dirac point as well as by the lateral asymmetry varied by applying unequal voltages to the DGG subgratings. The ratchet photocurrent includes the Seebeck thermoratchet effect as well as the effects of "linear" and "circular" ratchets, sensitive to the corresponding polarization of the driving electromagnetic force. The experimental data are analyzed for the electronic and plasmonic ratchets taking into account the calculated potential profile and the near field acting on carriers in graphene. We show that the photocurrent generation is based on a combined action of a spatially periodic in-plane potential and the spatially modulated light due to the near-field effects of the light diffraction

    Определение природных и техногенных радионуклидов в бальнеологических объектах

    Get PDF
    Quantitative detection of angiogenic biomarkers provides a powerful tool to diagnose cancers in early stages and to follow its progression during therapy. Conventional tests require trained personnel, dedicated laboratory equipment and are generally time-consuming. Herein, we propose our developed biosensing platform as a useful tool for a rapid determination of Angiopoietin-2 biomarker directly from patient plasma within 30 minutes, without any sample preparation or dilution. Bloch surface waves supported by one dimensional photonic crystal are exploited to enhance and redirect the fluorescence arising from a sandwich immunoassay that involves Angiopoietin-2. The sensing units consist of disposable and low-cost plastic biochips coated with the photonic crystal. The biosensing platform is demonstrated to detect Angiopoietin-2 in plasma samples at the clinically relevant concentration of 6 ng/mL, with an estimated limit of detection of approximately 1 ng/mL. This is the first Bloch surface wave based assay capable of detecting relevant concentrations of an angiogenic factor in plasma samples. The results obtained by the developed biosensing platform are in close agreement with enzyme-linked immunosorbent assays, demonstrating a good accuracy, and their repeatability showed acceptable relative variations

    A Large-Scale Rheumatoid Arthritis Genetic Study Identifies Association at Chromosome 9q33.2

    Get PDF
    Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease affecting both joints and extra-articular tissues. Although some genetic risk factors for RA are well-established, most notably HLA-DRB1 and PTPN22, these markers do not fully account for the observed heritability. To identify additional susceptibility loci, we carried out a multi-tiered, case-control association study, genotyping 25,966 putative functional SNPs in 475 white North American RA patients and 475 matched controls. Significant markers were genotyped in two additional, independent, white case-control sample sets (661 cases/1322 controls from North America and 596 cases/705 controls from The Netherlands) identifying a SNP, rs1953126, on chromosome 9q33.2 that was significantly associated with RA (ORcommon = 1.28, trend Pcomb = 1.45E-06). Through a comprehensive fine-scale-mapping SNP-selection procedure, 137 additional SNPs in a 668 kb region from MEGF9 to STOM on 9q33.2 were chosen for follow-up genotyping in a staged-approach. Significant single marker results (Pcomb<0.01) spanned a large 525 kb region from FBXW2 to GSN. However, a variety of analyses identified SNPs in a 70 kb region extending from the third intron of PHF19 across TRAF1 into the TRAF1-C5 intergenic region, but excluding the C5 coding region, as the most interesting (trend Pcomb: 1.45E-06 → 5.41E-09). The observed association patterns for these SNPs had heightened statistical significance and a higher degree of consistency across sample sets. In addition, the allele frequencies for these SNPs displayed reduced variability between control groups when compared to other SNPs. Lastly, in combination with the other two known genetic risk factors, HLA-DRB1 and PTPN22, the variants reported here generate more than a 45-fold RA-risk differential

    The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises

    Get PDF
    The Lancet Countdown is an international collaboration, established to provide an independent, global monitoring system dedicated to tracking the emerging health profile of the changing climate. The 2020 report presents 43 indicators across five sections: climate change impacts, exposures, and vulnerability; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. This report represents the findings and consensus of the 35 leading academic institutions and UN agencies that make up the Lancet Countdown, and draws on the expertise of climate scientists, geographers, and engineers; of energy, food, and transport experts; and of economists, social and political scientists, data scientists, public health professionals, and doctors

    Voter overrepresentation, vote misreporting, and turnout bias in postelection surveys

    No full text
    Figures from postelection surveys often grossly overestimate election turnout. Two distinct phenomena are responsible for this gap: overrepresentation of actual voters and vote misreporting by actual nonvoters among survey respondents. Previous accounts of turnout bias are inconclusive in that they either focus on a single component, or fail to separate between the two. In this paper, we formally decompose turnout bias in election surveys into its constituent parts, assess their empirical prevalence and heterogeneity using an extensive collection of 49 vote validation studies from six countries, and employ Bayesian meta regression techniques to account for cross-study differences. Our results indicate that both election and survey characteristics such as actual voter turnout and survey response rates differentially affect the components of turnout bias. We conclude with a discussion of the threats and potentials of our findings for survey-based comparative electoral research
    corecore