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Terahertz ratchet effects in graphene with a lateral superlattice
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Experimental and theoretical studies on ratchet effects in graphene with a lateral superlattice excited by
alternating electric fields of terahertz frequency range are presented. A lateral superlattice deposited on top of
monolayer graphene is formed either by periodically repeated metal stripes having different widths and spacings
or by interdigitated comblike dual-grating-gate (DGG) structures. We show that the ratchet photocurrent excited
by terahertz radiation and sensitive to the radiation polarization state can be efficiently controlled by the back gate
driving the system through the Dirac point as well as by the lateral asymmetry varied by applying unequal voltages
to the DGG subgratings. The ratchet photocurrent includes the Seebeck thermoratchet effect as well as the effects
of “linear” and “circular” ratchets, sensitive to the corresponding polarization of the driving electromagnetic
force. The experimental data are analyzed for the electronic and plasmonic ratchets taking into account the
calculated potential profile and the near field acting on carriers in graphene. We show that the photocurrent
generation is based on a combined action of a spatially periodic in-plane potential and the spatially modulated
light due to the near-field effects of the light diffraction.
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I. INTRODUCTION

Graphene has revealed fascinating phenomena in a number
of experiments owing to specifics of the electron energy
spectrum resembling that of a massless relativistic particle
[1–5]. Unique physical properties of graphene, such as the
gapless linear energy spectrum, pure two-dimensional (2D)
transport, strong plasmonic response, and comparatively high
mobility at room temperature, open the prospect of high-speed
electronics and optoelectronics, in particular, fast and sensitive
detection of light for a range of frequencies from ultraviolet to
terahertz (THz). Different mechanisms, by which the detection
can be accomplished, include (i) photoconductivity due to
bolometric and photogating effects [6–8], (ii) photothermo-
electric (Seebeck) effect [9], (iii) separation of the photoin-
duced electron-hole pairs in a periodic structure with two dif-
ferent metals serving as contacts to graphene [10,11] (double
comb structures) or a p-n junction [12], and (iv) excitation of
plasma waves in a gated graphene sheet [13,14] (for reviews,
see [15–21]). As we show in the following, graphene-based
detectors may operate applying ratchet effects excited by THz
radiation in a 2D crystal superimposed by a lateral periodic
metal structure. The ratchet effect is of very general nature:
The spatially periodic, noncentrosymmetric systems being
driven out of thermal equilibrium are able to transport particles
even in the absence of an average macroscopic force [22].
This effect, so far demonstrated for semiconductor quantum
wells with lateral noncentrosymmetric superlattice structures
[23–30], promises high responsivity, short response times, and
even new functionalites, such as all-electric detection of the
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radiation polarization state including radiation helicity being
so far realized applying photogalvanics [31,32]. Most recently,
electronic and plasmonic ratchet effects have been considered
theoretically in Refs. [33–38] supporting the expected benefit
of graphene-based detectors.

In this work, we report on the experimental realization and
systematic study of graphene ratchets in both (i) epitaxially
grown and (ii) exfoliated graphene with an asymmetric lateral
periodic potential. The modulated potential has been obtained
by fabrication of either a sequence of metal stripes on top of
graphene or interdigitated comblike dual-grating-gate (DGG)
structures. We demonstrate that THz laser radiation shining
on the modulated devices results in the excitation of a direct
electric current being sensitive to the radiation’s polarization
state. The application of different electrostatic potentials to
the two different subgratings of the dual-grating-gate structure
and variation of the back gate potential enables us to change
in a controllable way the degree and the sign of the structure
asymmetry as well as to analyze the photocurrent behavior
upon changing the carrier type and density. These data reveal
that the photocurrent reflects the degree of asymmetry induced
by different top gate potentials and even vanishes for a
symmetric profile. Moreover, it is strongly enhanced in the
vicinity of the Dirac point. The measurements together with a
beam scan across the lateral structure prove that the observed
photocurrent stems from the ratchet effect. The ratchet current
consists of a few linearly independent contributions including
the Seebeck thermoratchet effect as well as the “linear” and
“circular” ratchets, sensitive to the corresponding polarization
of the driving electromagnetic force. The results are analyzed
in terms of the theory of ratchet effects in graphene structures
with a lateral potential including the electronic and plasmonic
mechanisms of a photocurrent in periodic structures. We
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show that the ratchet photocurrent appears due to the non-
centrosymmetry of the periodic graphene structure unit cell.
The experimental data and the theoretical model are discussed
by taking the calculated potential profile and near-field effects
explicitly into account.

II. SAMPLES AND METHODS

We study the ratchet photocurrents in two different types of
structures. The superlattices of the first type are fabricated on
large-area graphene grown by high-temperature Si sublimation
of semi-insulating SiC substrates [39,40]. This type of sample
with the superlattice covering an area of about 1×1 mm2

on a graphene layer with a total area of about 5×5 mm2

allowed us, on one hand, to scan the laser beam across
the superlattice and, on the other hand, to examine the
photocurrent in directions along and perpendicular to the
metal stripes. All samples are made from the same wafer of
SiC. To obtain defined graphene edge,s we removed an edge
trim of about 200 μm width [see Fig. 1(c)] by reactive ion
etching with an argon/oxygen plasma. The carrier mobility
μ = 1800 cm2/Vs and residual hole density 5.3 ×1011cm−2

in graphene resulting in a carrier transport relaxation time
τ = 16 fs were measured at T = 200 K. Before fabricating the
superlattice structure, we carefully checked that the symmetry
of the pristine graphene is unaffected by steps (terraces), which
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FIG. 1. Cross section, photograph and sample geometry sketch
of (a)–(c) metal finger structure deposited on a large-area epitaxial
graphene (sample #A) and (d)–(f) interdigitated grating gates de-
posited on the exfoliated monolayer graphene flake (sample #B).
Here, d1,2 and a1,2 are the width of metal stripes and the spacing
in-between, respectively. The superlattice period is d = d1 + d2 +
a1 + a2.

may be formed on the SiC surface. For that, we studied
the THz radiation-induced photocurrent and ensured that it
vanishes at normal incidence [41–43]. As a further step,
we deposited an insulating aluminium oxide layer on top
of the graphene sheet. For this purpose, we first deposited
a thin (<1 nm) Al seed layer by evaporation in ultrahigh
vacuum and oxidized it subsequently. Then, we prepared 26 nm
layer of aluminum oxide Al2O3 with atomic layer deposition
using H2O and trimethyl aluminum as precursors. The lateral
periodic electrostatic potential is created by micropatterned
periodic grating-gate fingers fabricated by electron beam
lithography and subsequent deposition of metal (5 nm Ti
and 60 nm Au) on graphene covered by Al2O3. A sketch of
the gate fingers and a corresponding optical micrograph are
shown in Figs. 1(a) and 1(b), respectively. The grating-gate
supercell consists of two metal stripes having different widths
d1 = 2 μm and d2 = 1 μm separated by different spacings
a1 = 2 μm and a2 = 1 μm. This supercell is repeated to
generate an asymmetric periodic electrostatic potential [24,44]
(period d = d1 + a1 + d2 + a2 = 6 μm) superimposed upon
graphene [see Fig. 1(b)]. The 1×1 mm2 area grating-gate
structure is located on the left half of the sample so that a large
graphene area remains unpatterned [see Fig. 1(c)]. For the
THz beam of 1.5 mm diameter, this design allows us to study
the photocurrent excited in either the superlattice structure
or the unpatterned graphene reference area. Contact pads were
placed in a way that the photoinduced currents can be measured
parallel (jy , contacts 2 and 6) and perpendicular (jx , contacts
1 and 4) to the metal fingers. Two additional contacts (3 and
5) were used for detecting the photocurrent signals from the
unpatterned area as a reference.

The structures of the second type are fabricated on small-
area graphene flakes [1]. The benefit of these types of structures
is the possibility to apply different bias voltages to the
individual subgrating gates forming the superlattice allowing
us to explore the role of the asymmetry of the lateral periodic
electrostatic potential in the photocurrent formation as well
as to examine the ratchet effects in the vicinity of the Dirac
point. The graphene layers were prepared by mechanical
exfoliation of natural graphite onto an oxidized silicon wafer.
The samples used in this study were all single-layer flakes. The
periodic lateral electrostatic potential is created by 5 nm/60
nm Ti/Au interdigitated metal-grating gates deposited on top
of the graphene layer [see Figs. 1(d)–1(f)], applying the
method described above. The insulating layer of aluminum
oxide is used to separate the grating gates and graphene. The
asymmetric lateral structure incorporates the interdigitated
dual-grating gates (DGG) TG1 and TG2 having different stripe
width and stripe separation. An optical micrograph of the
interdigitated grating gates is shown in Fig. 1(e). The supercell
of the grating-gate fingers consists of metal stripes having
two different widths d1 = 0.5 μm and d2 = 1 μm separated
by spacings a1 = 0.5 μm and a2 = 1 μm [Fig. 1(d)]. This
asymmetric supercell is repeated six times to create a periodic
asymmetric potential (period d = 3 μm) [Fig. 1(e)]. The two
subgrating gates, each formed by fingers of identical width,
can be biased independently. Therefore, the asymmetry of
the lateral potential of the DGG structure can be varied in a
controllable way. Figure 2 shows the potential profile obtained
by a 2D finite-element-based electrostatic simulation using
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FIG. 2. (a) Modeled DGG device (sample type #B) geometry
showing the spatial distribution of the electrostatic potential ob-
tained by 2D finite-element simulation, considering gate voltages
(UTG1, UTG2) = (1,−2) V as an example. (b) Extracted equilibrium
free-carrier density profile in graphene (lower panel, positive carrier
density corresponds to electrons and negative carrier density corre-
sponds to holes in graphene) and the corresponding local energy band
offset (upper panel) assuming a uniform back gate contribution with
voltage UBG = 10 V as an example. We use the energy units for the
electrostatic potential in this paper.

FENICS [45] and GMSH [46] for the device geometry of the
experiment. The profile of this potential was found by solving
the Poisson equation taking into account its screening by
the carriers in graphene and the quantum capacitance effect
[47–49]; see Appendix A for details. The samples were glued
onto holders with conductive epoxy utilizing the highly doped
silicon wafer as a back gate which enabled us to change type
and density of free carriers in graphene.

The experiments were performed using a continuous
wave (cw) methanol laser [50–52] emitting at the frequency
f = 2.54 THz (wavelength of λ = 118 μm and photon energy
�ω = 10.5 meV). The radiation power P , being of the order of
50 mW at the sample surface, has been controlled by pyroelec-
tric detectors and focused onto samples by a parabolic mirror.
The beam shape of the THz radiation is almost Gaussian,
checked with a pyroelectric camera [53,54]. The peak intensity
in the laser spot on the sample, being of about 1.5 mm diameter
[55,56], was I ≈ 8 W/cm2. The THz radiation polarization
state was varied by rotation of crystal quartz λ/4 and λ/2
plates [57,58]. To obtain circular and elliptically polarized
radiation, the quarter-wave plate was rotated by an angle ϕ

between the initial polarization plane and the optical axis of
the plate. The radiation polarization states for several angles ϕ

are illustrated on top of Fig. 3. The orientation of the linearly
polarized radiation is defined by the azimuthal angle α with
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FIG. 3. Photovoltage V2-6(ϕ) − Voff measured in sample #A for
the laser spot focused on patterned graphene, position 1. The signal
is plotted as a function of the angle ϕ defining the radiation
polarization state. The ellipses on top illustrate the polarization
states for several values of ϕ. Solid curve shows the fit according
V2-6(ϕ) − Voff = VC sin 2ϕ + VL1(sin 4ϕ)/2 [see also Eqs. (8) and
(9) and the corresponding discussion in the text]. Dashed and
dotted-dashed curves show individual contributions VC sin 2ϕ and
VL1(sin 4ϕ)/2, respectively. Arrows indicate angles ϕ corresponding
to right-handed (σ+) and left-handed (σ−) circularly polarized
radiation.

α = ϕ = 0 chosen in such a way that the electric field of
the incident linearly polarized radiation is directed along the x

direction, i.e., perpendicular to the metal fingers. The ratchet
photocurrents have been measured in graphene structures at
room temperature as a voltage drop across a 50-� or 470-�
load resistance RL. The photovoltage signal is detected by
using standard lock-in technique. The photocurrent I relates to
the photovoltage V as I = V/RL because in all experiments
described below the load resistance was much smaller that
the sample resistance RS (RL � RS). The corresponding
photocurrent density is obtained as j = I/w, where w is the
width of the two-dimensional grating-gate structure being 1
mm for samples type #A and 5 μm for samples type #B.

III. EXPERIMENTAL RESULTS

A. Photocurrents in large-area epitaxial graphene structures

First, we discuss the results obtained from the large-
scale lattice prepared on the top of epitaxial graphene layer.
Irradiating the structure with the THz beam, position 1 in
Fig. 3, we detected a polarization-dependent photocurrent.
Figure 3 shows the corresponding photovoltage V ∝ jy ,
measured in the direction along the metal fingers (y direc-
tion) as a function of the angle ϕ governing the radiation
ellipticity. The signal varies with the radiation polarization
as V2-6(ϕ) − Voff = VC sin 2ϕ + VL1(sin 4ϕ)/2, where Voff is
a polarization-independent offset which is obtained as V2-6 at
ϕ = 0 [59]. The figure reveals that the signal is dominated
by the circular photocurrent jC ∝ VC being proportional to
the degree of circular polarization Pcirc = sin 2ϕ and reversing
its direction by inverting of the THz radiation helicity. The
second contribution to the signal VL1 ∝ jL1, whose amplitude
is about three times smaller than VC, corresponds to the
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FIG. 4. Circular photocurrent jC ∝ VC in sample #A as a function
of the laser spot position. The laser spot is scanned along the x

direction and the photocurrent is picked up from contacts 2-6 allowing
to probe current in the y direction (see top right inset). The solid line
represents the response calculated assuming that the signal stems from
the lateral structure only and using the laser beam shape measured
by the pyroelectric camera. The curve is scaled to the photocurrent
maximum. Dashed line is a guide for the eye. The bottom inset shows
schematically the grating-gate position.

photocurrent driven by the linearly polarized radiation and
vanishes for circularly polarized radiation. In experiments
applying half-wave plates it varies with the azimuth angle
α as V2-6(α) − Voff = VL1 sin 2α (not shown). Note that the
functions (sin 4ϕ)/2 and sin 2α describe the degree of linear
polarization of THz electric field in the coordinate frame x ′,y ′
rotated by 45◦ in respect to the x,y axes [25]. Our experiments
were performed on several identically patterned samples.
Although they were processed and structured identically, we
observe different ratios of the linear and circular components
for the same wavelength. As we show in the following, this
fact can be attributed to slightly different intrinsic transport
relaxation times (charge-carrier mobilities) in the samples.

Shifting the beam spot away from the structured area,
position 2 in Fig. 3, and measuring the signal either from
contacts 2-6 or 3-5, we observe the signal reduced by an order
of magnitude. This observation indicates that the photocurrent
stems from the irradiation of the superlattice. To provide
additional evidence for this conclusion, we scanned the laser
spot across the sample along the x direction. The photocurrent
was measured between contacts 2 and 6 aligned along the
metal stripes, i.e., along the y direction. The experimental
geometry and the circular photocurrent jC ∝ VC as a function
of the radiation spot position l are shown in Fig. 4. The
current reaches its maximum for the laser spot centered at the
superlattice and rapidly decays with the spot moving away.
Comparison of VC(x) with the curve calculated assuming
that the signal stems from the lateral structure only and
by using the laser beam spatial distribution measured by
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x induced by linearly polar-

ized radiation in the large epitaxial sample #A and DGG graphene
sample #B in the x direction normal to the metal stripes. Arrows on top
show the polarization plane orientation for several angles α. The data
for the DGG sample #B are obtained for UTG1 = UTG2 = 0 and UBG =
−20 V. Solid curves show fit according to V norm

x = V0 + VL2 cos 2α

[see also Eq. (7) and the corresponding discussion in the text].

a pyroelectric camera shows that the signal follows this
curve. This observation unambiguously demonstrates that the
photocurrent is caused by irradiating the superlattice. It also
excludes photocurrents emerging due to possible radiation-
induced local heating causing the Seebeck effect, as such a
signal should obviously reverse its sign at the middle of the
sample. The only deviation from this behavior is detected
for large values of l at which the signal starts growing
again. This result is attributed to the generation of the edge
photocurrents reported in Refs. [43,56]. For large-l values, the
beam spot reaches the edge of the graphene sample, resulting
in a photocurrent caused by the asymmetric scattering at the
graphene edge [56]. The ratchet photosignal V1-4 ∝ jx is also
observed in the direction perpendicular to the fingers, i.e.,
along the x direction. In this case, the signal is insensitive to the
THz electric field handedness and varies only with the degree
of linear polarization as V1-4 = V0 + VL2(cos 4ϕ + 1)/2 or
V1-4 = V0 + VL2 cos 2α (see Fig. 5 showing V1-4 as a function
of the azimuthal angle α). The same dependence has been
measured in the DGG device, sample #B in Fig. 5, indicating
that the DGG structure features the same superlattice effect as
the large-area one (sample #A). As we show in the following,
the appearance of the photocurrent along and across the
periodic structure as well as its polarization dependence are in
full agreement with the ratchet effects excited by polarized
THz electric field in asymmetric lateral superlattices. The
overall qualitative behavior of the photocurrent is also in
agreement with that of the electronic ratchet effects observed
in semiconductor quantum well structures with a lateral su-
perlattice [23–25]. So far, the properties of graphene were not
manifested explicitly. The Dirac fermion properties of charge
carriers in graphene manifest themselves in superlattices of
type #B with independently controlled gates.

B. Photocurrents in interdigitated dual-grating-gates
graphene structures

The ratchet effects are expected to be strongly dependent
on the in-plane asymmetry of the electrostatic potential and
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FIG. 6. Back gate voltage dependencies obtained for the top
subgate voltages UTG1 = UTG2 = UTG. (a) Two-terminal resistance
of the DGG structure #B. (b) Photocurrent jx(α = 0) = j0 + jL2

normalized by the radiation intensity. Inset shows the energy band
offset profiles at UTG = 0 and UBG = −20 V. (c) Photocurrent
jx(α = 0) normalized by the radiation intensity as a function of the
relative gate voltage UBG − Um,i, where Um,i is defined as the back
gate voltage for which the resistance is the largest at corresponding
UTG [see panel (a)].

near-field effects of the radiation diffraction [25,33,34,38].
To demonstrate the effect of the asymmetry and exam-
ine the ratchet effects in the vicinity of Dirac point, we
studied samples with an interdigitated dual-grating structure
[see Figs. 1(d)–1(f)]. In the DGG structures, the degree of
asymmetry can be controllably varied by applying different
potentials to the top grating gates. Moreover, using the back
gate voltage UBG, we can globally change the background
carrier density in the graphene flake. When the top gates are
both grounded, the resistance exhibits one maximum upon
tuning the back gate voltage. The maximum corresponds to
the Dirac point and is detected close to zero voltage, which
confirms low residual doping of graphene [Fig. 6(a)]. When
we apply a voltage to the top gates, the back gate voltage
corresponding to the Dirac point is shifted due to stray coupling
of the top grating gates into the entire graphene. Furthermore,
the top gates strongly modulate the carrier density in graphene
directly underneath them, leading to an additional weak
resistance maximum in the back gate response. Applying
voltages of different polarity to different top grating gates

results in a superpostition of resistance maxima corresponding
to the Dirac points underneath and between the gate fingers
(not shown here). We observe a slight hysteresis in the back
gate sweep (shift of the resistance maximum position by
UBG ≈ 5 V), which is probably due to the measurement being
performed in the ambient air. When we set the TG1 voltage to
UTG1 = −2 V and TG2 voltage to UTG2 = +2 V, we observe
a splitting of the Dirac peak into three peaks (not shown),
corresponding to regions with three different carrier densities:
underneath the top gates TG1 and TG2 and in-between the
gate stripes, respectively.

Due to technological reasons (presence of the subgrating
gates), the photocurrent in DGG structures can be exam-
ined only in source-drain direction, i.e., normal to the gate
stripes [60]. In the following experiments aimed to study
the photocurrent jx(α = 0) = j0 + jL2 as a function of the
back gate voltage for differently biased top gates we used
the THz radiation polarized along the source-drain direction.
Figure 6(b) shows jx(UBG) obtained for the three equal values
of top gate voltages UTG1 = UTG2 = UTG. The photocurrent
shows a complex sign-alternating behavior with enhanced
magnitude in the vicinity of the Dirac points being character-
ized by resistance maxima and sign inversion for UTG = 0 and
+1 V. The photocurrents have opposite directions at very high
(above UBG = 40 V) and at high negative back gate voltages.
Figure 6(b) demonstrates that while the overall dependencies
of the photovoltage obtained at different top gate potentials
are very similar, they are shifted with respect to each other to
that in the transport curves. This is clearly seen in Fig. 6(c)
where the curves for nonzero top gate voltages are shifted by
the back gate voltage Um,i at which the resistance achieves
maximum at corresponding UTG [see Fig. 6(a)]. The figure
reveals that the current can change its sign in the vicinity
of the Dirac point. This fact can naturally be attributed to
the change of carrier type from positively charged holes to
negatively charged electrons [61].

In order to tune the lateral asymmetry, we applied different
bias voltages UTG1 �= UTG2 to the grating subgates. Figure 7
shows the photocurrent jx obtained for (i) UTG1 = 2 V, UTG2 =
−2 V, (ii) UTG1 = −2 V, UTG2 = 1 V, and (iii) UTG1 = −2 V,
UTG2 = 0. For cases (i) and (ii), the potential asymmetry is
efficiently inverted and hence we obtain inverted photocurrents
far away from the Dirac point, i.e., at large values of UBG.
These observations show that the photocurrent is caused by
the excitation of the free carriers in graphene beneath the
superlattice and its direction depends on the sign of the in-plane
asymmetry of the electrostatic potential. More complicated
behavior is detected in the vicinity of the Dirac points. Here,
the polarity of the free-carrier distribution in graphene and
hence that of the photocurrent strongly depend on the voltage
set at the top gates. This causes a more complicated variation
of the photocurrent (including its sign reversal) as a function of
the back gate voltage UBG around the Dirac point. Comparing
the magnitudes of the signals for equal and unequal top gate
voltages [Figs. 6(b) and 7(a), respectively] we see that in the
latter case the photocurrent is several times enhanced. Finally,
we note that if only one of the top gates is biased, the signal
vanishes for almost all back gate voltages. The calculation
of the electrostatic potential indeed reveals that the potential
becomes almost symmetric in this case indeed.
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FIG. 7. (a) Gate voltage dependence of the photocurrent jx(α =
0) = j0 + jL2 normalized by the radiation intensity measured for
three sets of unequal potentials at the top gates UTG1 �= UTG2. Panels
(b) and (c) show, respectively, the energy band offset and carrier
density at UBG = −20 V.

To summarize, experiments on two different types of
graphene structures provide a self-consistent picture, demon-
strating that the photocurrents (i) are generated due to the
presence of asymmetric superlattices, (ii) are characterized
by specific polarization dependencies for directions along
and across the metal stripes, (iii) changes the direction upon
reversing the in-plane asymmetry of the electrostatic potential
as well as changing the carrier type, (iv) are characterized by
a complex sign-alternating back gate voltage dependence in
the vicinity of the Dirac point, and (v) are strongly enhanced
around the Dirac point.

IV. DISCUSSION

Now, we discuss the origin of the ratchet current in
graphene with an asymmetrical grating irradiated by the THz
beam. The effect of the grating is twofold: (i) it generates a
one-dimensional periodic electrostatic potential V(x) acting
upon the 2D carriers and (ii) it causes a spatial modulation
of the THz electric field due to the near-field diffraction [58].
Figures 8(a) and 8(b) show calculated coordinate dependencies
of the free-carrier density n0(x) and THz electric near-field
E(x) for the DGG structure #B for two combinations of the top
and back gate voltages. The electric field distribution caused
by the near-field diffraction is calculated for radiation with
the frequency f = 2.54 THz applying a self-consistent elec-
tromagnetic approach based on the integral equation method
described in detail in Ref. [62] (see also Appendix A). Figure 8
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FIG. 8. Equilibrium free-carrier density profile as a function of
the coordinate x, shown for one period (d = 3 μm) of the DGG
sample #B. Shadowed areas indicate the positions of the metal stripes.
The data are calculated for the electrostatic potential corresponding
to (a) UTG1 = −2 V, UTG2 = 1 V, UBG = 40 V, and (c) UTG1 = 2 V,
UTG2 = −2 V, UBG = 40 V. Panels (b) and (d) show the corresponding
near-field amplitude distribution of the radiation with f = 2.54 THz
for the above set of gate potentials. The near field is shown as a ratio
of the amplitude of the near field |Ex | acting on graphene along the
x direction and the amplitude E0 of the electric field of the incident
plane wave.

demonstrates that both the carrier density and THz field acting
on charge carriers in the x direction are asymmetric and their
distribution is strongly affected by the voltages applied to the
individual top gratings. These one-dimensional asymmetries
result in the generation of a dc electric current. As we show
in the following, the ratchet current may flow perpendicular
to the metal fingers or along them. The mechanism leading
to the photocurrent formation can be illustrated on the basis
of the photocurrent caused by the Seebeck ratchet effect
(thermoratchet). This type of the ratchet currents can be
generated in the direction perpendicular to the metal stripes
and corresponds to the photocurrent jS

x ∝ V0 in Fig. 5. The
spatially modulated electric field of the radiation heats the
electron gas changing the effective electron temperature from
the equilibrium value T to T (x) = T̄ + δT (x) [63]. Here, T̄

is the average electron temperature and δT (x) oscillates along
the x direction with the superlattice period d. In turn, the
nonequilibrium correction δT (x) causes an inhomogeneous
correction to the dc conductivity δσ (x) ∝ δT (x). Taking into
account the space-modulated electric field (−1/e)dV/dx, we
obtain from Ohm’s law the thermoratchet current in the form
[33]

jS
x = −1

e

〈
dV
dx

δσ (x)

〉
. (1)

Here, e < 0 is the electron charge, and angular brackets denote
averaging over a spatial period. This photocurrent vanishes if
the temperature is not space modulated, therefore, it is called
the Seebeck ratchet current [64].
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Aside from the thermoratchet effect, the THz radiation can
induce additional photocurrents being sensitive to the linear
polarization plane orientation or to the helicity of circularly
polarized photoexcitation. In the classical regime achievable
in our experiments and characterized by �ω � εF where εF is
the Fermi energy, all these photocurrents can be well described
by means of Boltzmann’s kinetic equation for the coordinate-
dependent distribution function fk(x). It has the following
form:(

∂

∂t
+ vk,x

∂

∂x
+ F(x)

�

∂

∂k

)
fk(x) + Qk{f } = 0, (2)

where vk is the velocity of an electron with the wave vector k
being equal in graphene to v0k/k, v0 = 106 m/s is the Dirac
fermion velocity, Qk is the collision integral, and F(x) is the
periodic force acting on charged carriers

F(x) = e[E(x)e−iωt + c.c.] − dV(x)

dx
x̂, (3)

where x̂ is the unit vector in the x direction. In terms of the
distribution function, the electric current density is written as

j = 4e
∑

k

vk〈fk(x)〉, (4)

where the factor 4 accounts for the spin and valley degeneracies
in graphene. In the next section, we present the theory of
the ratchet currents which is valid for arbitrary large and
abrupt periodic electrostatic potentials V(x) and results of
numerical calculations based on the developed theory and
the complex distribution of the near field. However, in order
not to overload the discussion of the experimental results
with cumbersome equations, we first follow Refs. [23–25,33]
and present solutions of the Boltzmann equation for weak
and smooth electrostatic potential and the electric near field.
Iterating the Boltzmann equation (2) for small V(x), E(x), and
their gradients, and ignoring the birefringence effect under
the grating gate [65,66], we obtain the dc current density
components jx and jy :

jx =
〈
[χ0E

2 + χL (|Ex |2 − |Ey |2)]
dV
dx

〉
, (5)

jy =
〈
[χ̃L (ExE

∗
y + E∗

xEy) + γ i(ExE
∗
y − E∗

xEy)]
dV
dx

〉
. (6)

For incident radiation, the combinations bilinear in the field
amplitudes vary upon rotation of quarter- and half-wave plates
as [66]

|Ex |2 − |Ey |2 = E2 cos 4ϕ + 1

2
= E2 cos 2α, (7)

ExE
∗
y + E∗

xEy = E2 sin 4ϕ

2
= E2 sin 2α, (8)

i(ExE
∗
y − E∗

xEy) = −E2 sin 2ϕ. (9)

All photocurrent contributions are detected in experiment
(see Figs. 3 and 5). The coefficient χ0 corresponds to the
thermoratchet current discussed above. This photocurrent can
be generated in the in-plane direction normal to the metal
stripes. In experiments it yields the signal V0 ∝ j0 (see Fig. 5).
The part of the signal detected for the same direction and

varying upon rotation of the linear polarization, VLP2 ∝ jLP2

in Fig. 5, is given by the second term in the right-hand
side of Eq. (5) and is proportional to χL [67]. The linear
(jLP1 ∝ VLP1) and circular (jC ∝ VC) photocurrents observed
in the direction along the metal stripes correspond to the first
and second terms in the right-hand side of Eq. (6) and describe
the linear (χ̃L) and circular (γ ) ratchet effects, respectively.
The polarization-dependent contributions appear because the
free carriers in the laterally modulated graphene can move in
the two directions (x,y) and are subjected to the action of the
two-component electric field with the Ex and Ey components.

Now, we discuss the role of the superlattice asymmetry
in the thermoratchet current formation. Taking the lateral-
potential modulation and the electric field in the simplest form

V(x) = V0 cos (qx + ϕV ), (10)

E(x) = E0[1 + h cos (qx + ϕE)], (11)

with q = 2π/d, we obtain for the average [33]〈
|E(x)|2 dV

dx

〉
= qV0hE2

0 sin (ϕE − ϕV ). (12)

The above phenomenological equations reveal that the ther-
moratchet current can be generated only if the lateral superlat-
tice is asymmetric. The asymmetry, created in our structures
due to different widths of the metal fingers and spacings
between them (Fig. 1), causes a phase shift between the
spatial modulation of the electrostatic lateral potential gradient
dV(x)/dx and the near-field intensity E2(x) yielding a nonzero
space average of their product. The role of the superlattice
lateral asymmetry and peculiarities of the graphene band
structure are explored in the experiments on the interdigitated
DGG structures. The back gate and the two independent
top subgrating gates enabled us to controllably change the
free-carrier density profile in the x direction. Let us begin
with the data for equal top gate potentials shown in Fig. 6.
At zero top gate voltages, the asymmetry is created by the
built-in potential caused by the metal stripes deposited on top
of graphene. Transport data reveal that at zero back gate voltage
we deal with graphene almost at the charge neutrality point.
The photocurrent shows a complex behavior upon variation
of the back gate voltage. First of all, it has the opposite
polarities at large positive and negative back gate voltages.
This fact can be primarily attributed to the change of the carrier
type in graphene which results in the reversal of the current
direction. At moderate back gate voltages, the amplitude of the
photocurrent substantially increases whereas in the vicinity
of the Dirac point it exhibits a double sign inversion. The
origin of this behavior is unclear. First of all, it may be caused
by possible band-to-band optical transitions which become
allowed at Dirac point because the double Fermi energy can be
smaller than the photon energy in this case. Also, as mentioned
in the previous section, the sign of the free-carrier distribution
in graphene and hence that of the photocurrent strongly depend
on the voltage set at the top gates which causes a more complex
variation of the photocurrent (including a photocurrent sign
reversal) as a function of the back gate voltage around the
Dirac point.
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Figure 6 demonstrates that the application of a positive or
negative voltage to both top gates does not change qualitatively
the photocurrent behavior but shifts the dependence as a whole
to smaller or larger back gate voltages in full correlation
with the shift of the charge neutrality point documented by
transport measurements. These results show that the current
is proportional to the charge sign of the carriers (negative for
electrons, positive for holes) in graphene. Figure 6(c) reveals
that the photocurrent reverses its direction under inversion of
the top gate voltage UTG from +1 V to −1 V. This fact is
also in agreement with Eq. (5). Indeed, at small amplitude
of the potential, the photocurrent is j ∝ 〈|E(x)|2dV/dx〉.
This average changes sign upon the inversion of the potential
V(x) → −V(x). Even a more spectacular role of the in-plane
asymmetry is exhibited in the experiments on the DGG struc-
ture with different polarities of the gate voltages applied to TG1
and TG2. First of all, the difference in the potentials increases
the asymmetry resulting in the photovoltage enhancement by
more than an order of magnitude for large positive and negative
gate voltages (Figs. 6 and 7). Moreover, the change of the
relative polarity of the TG1 and TG2 gate voltages results in
a reversed photocurrent direction for all back gate voltages
clearly reflecting the sign inversion of the static potential
asymmetry given by dV/dx. Figure 7 also shows that for a
certain combination of the top gate voltages (UTG1 = −2 V
and UTG2 = 0), the photocurrent almost vanishes. This fact
will be discussed in the next section presenting calculations of
the photocurrent for exact profiles of the electrostatic potential
and radiation near field.

Summarizing the discussion, all experimental findings can
consistently be explained qualitatively by the free-carrier
ratchet effects. A quantitative analysis is presented in Sec. V.

V. THEORY

A. Photocurrent in the direction normal to the grating stripes

Three microscopic mechanisms of the ratchet current
are considered and compared: (i) the Seebeck contribu-
tion generated in the course of the photoinduced spatially
modulated heating of the free carriers accompanied by a
periodic modulation of the equilibrium carrier density; (ii)
the polarization-sensitive current controlled by the elastic
scattering processes; and (iii) differential plasmonic drag. The
main difference of the first two mechanisms as compared with
those in lateral quantum-well structures [25] is determined
by specific properties of graphene, namely, (i) the linear,
Dirac-type, dispersion of free-carrier energy, and (ii) the
degenerate statistics of the free-carrier gas in doped (or gated)
graphene even at room temperature.

The photocurrent flowing in the periodicity direction is
given by

jx = jS
x + jL

x + jD
pl . (13)

Here, the first term is the Seebeck ratchet current. The second
term is caused by pure elastic scattering processes which are
not related to carrier heating [33], it yields a polarization-
dependent photocurrent varying upon rotation of the radiation
polarization plane. The photocurrent jD

pl is caused by the
differential plasmonic drag [34,38].

We apply the kinetic theory for calculating the Seebeck
ratchet current. For degenerate statistics it yields (see Ap-
pendix B)

jS
x = e3v2

0

π�2

τ 2τε

1 + (ωτ )2

〈|E(x)|2 d
dx

[εF − V(x)]−1
〉

〈[εF − V(x)]−1〉 . (14)

Here, τ and τε are the free-carrier momentum and energy
relaxation times, respectively. The derived expression for the
Seebeck ratchet current is valid for arbitrarily large and abrupt
periodic potential V(x). We assume the Fermi energy to lie
high above the Dirac point and take into account only one sort
of free carriers, namely, the electrons. The similar results are
obtained for the Fermi energy lying deep enough in the valence
band in which case the electron representation is replaced
by the hole representation. Due to the charge-conjugation
symmetry between electrons and holes in graphene, the current
(14) reverses under the changes εF → −εF, V(x) → −V(x),
and e → −e, where the energy is referred to the Dirac point.
We also note that this current vanishes if the x-coordinate
dependence of the near-field intensity |E(x)|2 is a composite
function f [V(x)]. One more symmetry property follows for a
low-amplitude potential |V(x)| � εF: in this case, the current
reversal occurs just at the potential inversion V(x) → −V(x).

The differential plasmonic-drag photocurrent jD
pl induced

in the grating-gated graphene by the normally incident THz
radiation can be estimated as (see Appendix C)

jD
pl = −2e3v2

0

π�2ω

τ 2

1 + (τω)2

∑
q

q(|Eq |2 − |E−q |2), (15)

where Eq are the Fourier-space harmonics of the in-plane
component of the near electric field Ex(x) in graphene with
q = 2πl/d where l is an integer. It is worth noting that the
differential plasmonic drag [38] can be also viewed phe-
nomenologically as a specific “linear” ratchet effect induced
in a periodic graphene structure by the normally incident THz
radiation with the electric field polarized perpendicular to the
grating gate.

We simulate the interaction of THz radiation incident
normally upon the grating-gated graphene in the framework
of a self-consistent electromagnetic approach based on the
integral equation method described in detail in Ref. [62]. The
calculations are performed for the characteristic parameters of
the DGG structure used in the experiment (see Appendix A).
In our simulations, we assume the metal grating stripes to
be perfectly conductive and infinitely thin. This is a quite
justified and commonly used assumption at THz (and lower)
frequencies where metals are characterized by a high real
conductivity. As a result of the electromagnetic modeling,
we obtain the in-plane component of the near electric field
in graphene E(x) ‖ x entering Eqs. (14) and (15). Periodic
electrostatic potential V(x) in graphene is created by applying
different electric voltages to the two different subgratings of
the DGG. It should be noted that the periodic electrostatic
potential is induced in graphene even for zero voltage at each
subgrating due to finite density of states in graphene (the
quantum capacitance effect). The profiles of the calculated
near electric field and the free-carrier density are shown in
Figs. 8(b) and 8(d) for various voltages applied to different
subgratings of the dual-grating gate at frequency 2.54 THz.
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FIG. 9. Seebeck thermoratchet (solid lines) and plasmonic-drag
(dashed line) photocurrents calculated for UBG = 40 V applied to the
DDG graphene superlattice sketched in Fig. 1. Red lines show the
results for UTG1 = 2 V and UTG2 = −2 V, blue lines for UTG1 = −2
V and UTG2 = 1 V. Red and blue dots correspond to the experimental
data taken from Fig. 7.

It is seen that the near electric field is asymmetric relative to
equilibrium free-carrier density profile in graphene. This gives
rise to the Seebeck (thermoratchet) photocurrent Eq. (14).

The calculated thermoratchet photocurrent as a function
of frequency is shown by solid curves in Fig. 9 for various
voltages applied to different subgratings of the DGG for
monopolar graphene charged by applying large positive
voltage to the back gate electrode. In this situation, we deal
with electrons in graphene under the metal fingers and between
them even for negative voltages applied to a top gate. It is
worth noting that the magnitude of the photocurrents as well
as the inversion of the photocurrent direction for reversing of
relative signs of voltages applied at different subgratings of the
top dual-grating gate are in accordance with the experimental
observations at the frequency 2.54 THz (Fig. 9).

The calculated differential plasmonic-drag photocurrent
(15) as a function of frequency is shown by dashed curves
in Fig. 9. It follows from the figure that, as well as for the
thermoratchet photocurrent, the inversion of the voltage signs
at different subgratings of the top DGG changes the sign of
the plasmonic-drag photocurrent. However, the plasmonic-
drag photocurrent is directed oppositely to the thermoratchet
photocurrent. Therefore, the plasmonic-drag photocurrent can
compensate or, for a certain combination of top gate voltages,
even cancel the thermoratchet photocurrent diminishing the
total photocurrent generated in graphene by the incident THz
radiation. This fact may be responsible for the vanishingly
small photocurrent observed for UTG1 = −2 V and UTG2 = 0
(Fig. 7).

B. Photocurrent in the direction along the grating stripes

Solution of the Boltzmann equation (2) also yields the y

component of the photocurrent. In order to derive the expres-
sion for jy for the electrostatic potentialV(x) comparable to the
Fermi energy, we assume that both energy relaxation and diffu-
sion are less effective than elastic scattering: D0(π/d)2,τ−1

ε �
ω,τ−1, but the product ωτ can be arbitrary. Here, D0 = v2

0τ/2
is the diffusion constant of the Dirac fermions in graphene.

We consider the elastic scattering by a long-range Coulomb
potential. In this case, the momentum relaxation time in
nonstructured graphene is a linear function of the Fermi
energy: τ ∝ εF. Therefore, in the structures with a lateral
superlattice under study we have τ (x) = 〈τ 〉[1 − V(x)/εF].
Using the procedure described in Ref. [33], we obtain the
photocurrent component along the grating stripes in the form
of Eq. (6):

jy =
〈
[χ̃L(ExE

∗
y + E∗

xEy) + γ i(ExE
∗
y − E∗

xEy)]
dV
dx

〉
, (16)

where the coordinate dependence of the coefficients χ̃L and γ

is given by

χ̃L(x) = −e3v2
0〈τ 〉

2π�2εF

τ 2(x)[3 + ω2τ 2(x)]

1 + ω2τ 2(x)
,

γ (x) = e3v2
0〈τ 〉

π�2εF

τ (x)

ω[1 + ω2τ 2(x)]
. (17)

The coefficients χ̃L and γ describe the linear and circular
ratchet effects, respectively. The linear polarization-dependent
and helicity-dependent combinations of the products ExE

∗
y

and E∗
xEy which determine the photocurrent jy are related to

the corresponding combinations of the incident radiation as
follows [65]:

Ex(x)E∗
y (x) = R(x)E0xE

∗
0y.

A presence of imaginary part ImR �= 0 is caused by effective
birefringence of the studied low-symmetry structure resulting
in an ellipticity of the near-field polarization under incidence
of pure circularly or pure linearly (in the frame x ′,y ′) polarized
radiation.

VI. CONCLUSION

To summarize, we have demonstrated that ratchet effects
driven by THz electric fields can be efficiently generated in
graphene with a lateral superlattice. The ratchet photocurrent
includes the Seebeck thermoratchet effect as well as the
effects of “linear” and “circular” ratchets, sensitive to the
corresponding polarization of the driving electromagnetic
force. Studying the ratchet effect in the interdigitated comblike
dual-grating-gate structures we have demonstrated that its
amplitude and sign can be efficiently controlled by applying
unequal voltages to the DGG sublattices or the back gate
voltage. We have calculated the electronic and plasmonic
ratchet photocurrents at large negative and positive back gate
voltages taking into account the calculated potential profile and
the near field acting on carriers in graphene. The understanding
of the observed complex back gate dependence and strong
enhancement of the ratchet effect in the vicinity of the Dirac
point, however, requires further study. In particular, a theory
describing ratchet effects for systems with periodic change of
the carrier type is to be developed. Further development of
the theory is also required for a quantitative analysis of the
plasmonic ratchet effects in graphene.
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APPENDIX A: ELECTROSTATIC POTENTIAL
PROFILE AND NEAR-FIELD CALCULATIONS

The one-dimensional electric potential energy profile V(x)
(or more precisely local energy band offset profile) is calcu-
lated via

V(x) = −sgn[n0(x)]�v0

√
π |n0(x)|, (A1)

where n0(x) is the equilibrium carrier density profile (positive
carrier density corresponds to electrons and negative carrier
density corresponds to holes in graphene) obtained by a 2D
finite-element-based electrostatic simulation using FENICS [45]
and GMSH [46], combined with the quantum capacitance model
[48,49].

The finite-element simulation follows the device geometry
of the experiment (see Figs. 1 and 2) and provides the classical
self-partial capacitance for individual top gate set 1 CTG1 and
set 2 CTG2, while the quantum capacitance model takes care
of the correction to the net charge density due to the finite
density of states of the conducting layer (here graphene) [47].
Together with the global back gate capacitance CBG that can
be described by the parallel-plate formula, the total classical
carrier density is given by

nC(x) = nD +
∑

g

Cg(x)

|e| Ug, (A2)

where the summation runs over g = {TG1,TG2,BG}, and a
uniform intrinsic doping concentration nD ≈ −9×1010 cm−2

is considered in our slightly p-doped graphene sample. The
net carrier density after taking into account the quantum
capacitance correction reads as [49]

n0(x) = nC(x) + sgn[nC(x)]nQ(x)

(
1 −

√
1 + 2

|nC(x)|
nQ(x)

)

+sgn(nD)
√

2nQ(x)|nD|, (A3)

with nC(x) given in Eq. (A2) and nQ(x) = (π/2)
[�v0/e

2 ∑
g Cg(x)]2. Therefore, Eq. (A3) gives the total carrier

density as a function of position, subject to arbitrary voltage
inputs, and can be inserted in Eq. (A1) to finally obtain the
electric potential energy profile V(x ; UTG1,UTG2,UBG).

The near electric field in graphene induced by a normally
incident THz wave was calculated by using the self-consistent
electromagnetic approach described in Ref. [62]. Calculations
were performed for the characteristic parameters of the DGG
structure used in the experiment: d1 = 0.5 μm, d2 = 1 μm,
a1 = 0.5 μm, a2 = 1 μm, and τ = 5 ps. Dielectric constants
of the graphene substrate (SiO2) and the barrier layer (Al2O3)
between graphene and the top DGG gate are 3.9 and 9
(see [68]), respectively. The barrier layer thickness is 30 nm.
The frequency-dependent response of graphene is described

by a local dynamic conductivity [69]

σ (ω) = σ0

{
8kBT τ

π�(1 − iωτ )
ln

[
2 cosh

(
εF − V(x)

2kBT

)]

+G

(
�ω

2

)
+ 4i�ω

π

∫ ∞

0

G(ς ) − G
(

�ω
2

)
(�ω)2 − 4ς2

dς

}
, (A4)

where

G(ς ) = sinh(ς/kBT )

cosh(εF/kBT ) + cosh(ς/kBT )
, (A5)

σ0 = e2/(4�), and the temperature T is set to 300 K. The first
term in Eq. (A4) describes a Drude-type response involving
the intraband processes with the phenomenological carrier
scattering time τ , which can be estimated from the measured dc
carrier mobility as τ = μεF/(|e|v2

0) [70]. The second and third
terms in Eq. (A4) describe the interband carrier transitions in
graphene.

APPENDIX B: DERIVATION OF THE SEEBECK
RATCHET CURRENT DENSITY

For the structures under consideration, one needs to extend
the theory of the Seebeck ratchet current derived in Ref. [33]
for a weak electron periodic potential V(x) to an arbitrarily
large potential. For simplicity, we assume the Fermi energy to
lie high enough above the Dirac point and consider one sort of
free carriers.

The absorption of THz radiation results in an inhomoge-
neous heating of 2D carriers in graphene with a lateral superlat-
tice. Similarly to Ref. [33], we present the time-independent
electron distribution function fk as a sum f +

k + f −
k of the

components even and odd in k, respectively, decompose the
Boltzmann kinetic equation into even and odd parts, select
the odd-in-k part and arrive at the following equation for the
function f −

k contributing to the Seebeck ratchet effect:

f −
k

τ
+ vx

∂f +
k

∂x
− 1

�

∂V

∂x

∂f +
k

∂kx

= 0. (B1)

Here, the potential V (x) is a sum V(x) + U (x) of the equi-
librium potential V(x) and a correction U (x) that appears due
to the radiation-induced carrier redistribution. This correction
is proportional to the radiation intensity and related by
the Poisson equation to a radiation-induced change δn(x) =
n(x) − n0(x) where n0(x) is the equilibrium electron density
and

n(x) = 4
∑

k

f +
k (x) (B2)

is the steady-state nonequilibrium density. The Poisson equa-
tion is easier to express in terms of the Fourier transforms as
follows:

2|qx |æUqx
= 4πe2

(
nqx

− n0,qx

)
, (B3)

where æ is the dielectric constant. Hereafter, the average value
of the electron density n̄ is fixed which imposes the following
restriction on the electron density:

1

d

∫ d

0
n(x)dx = 1

d

∫ d

0
n0(x)dx ≡ n̄. (B4)
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Multiplying Eq. (B1) by evkxτ and summing over the
electron spin s, the valley index ν, and the quasimomentum k,
we get the Seebeck ratchet current density:

j = e
dV

dx

∑
νsk

τv2
x

∂f +
k

∂εk

− e
∑
νsk

τv2
x

∂f +
k

∂x
, (B5)

where εk is the electron energy dispersion linear in graphene.
The current is zero in the absence of radiation because,
in equilibrium, f +

k (x) = f0[εk + V(x)] where f0(εk) is the
Fermi-Dirac distribution function, and hence

∂f +
k (x)

∂x
= dV(x)

dx

∂f +
k (x)

∂εk

.

The current density (B5) can be expressed via the conduc-
tivity

σ = e2
∑
νsk

v2
k τ

2

(
−∂f +

k

∂εk

)
(B6)

and the diffusion coefficient D(εk) = v2
k τ/2 as follows:

j = −1

e

dV

dx
σ (x) − e

∂

∂x

∑
νsk

D(εk)f +
k . (B7)

This result is valid in all orders in V(x).
In what follows, we assume τ to be independent of the

particle energy εk . Then, in graphene the coefficient D equals
to v2

0τ/2 ≡ D0 and is independent of εk . As a result, one has

j = −1

e

dV (x)

dx
σ (x) − eD0

dn(x)

dx
. (B8)

Obviously, one can equivalently substitute the corrections
δn(x) and δσ (x) into Eq. (B7) instead of n(x) and σ (x).

Before the search for δn(x) and δσ (x) we exclude the
potential U (x) from the consideration. For this purpose, we
decompose the electron density and the conductivity in the
following form:

n(x) = ñ0(x) + δn′(x), σ (x) = σ̃0(x) + δσ ′(x) + δσheat.

(B9)

Here, δσheat(x) is a local change of the electron conductivity
caused by heating by the THz radiation (see following) and
the functions ñ0(x) and σ̃0 are auxiliary: they are found from
Eqs. (B2) and (B6) with the exact function f +

k replaced by the
auxiliary (quasiequilibrium) function

f̃ +
k =

{
exp

[
εk − εF − δεF + V(x) + U (x)

T

]
+ 1

}−1

,

(B10)

where εF is the equilibrium Fermi energy and the correction
δεF restores the average electron density. One can check that
ñ0(x) and σ̃0(x) satisfy the equation

− 1

e
σ̃0(x)

d

dx
[V(x) + U (x)] − eD0

dñ0(x)

dx
= 0. (B11)

Neglecting a second-order correction proportional to
[dU (x)/dx]δσ ′(x) we obtain an equation for the electric
current determined exclusively by V(x) and the corrections

δn′(x), δσ ′(x):

j = −1

e

dV
dx

[δσ ′(x) + δσheat(x)] − eD0
dδn′

dx
. (B12)

The two corrections are related with each other by

δσ ′(x) = g0(x)δn′(x), g0(x) = δσ0(x)

δn0(x)

∣∣∣∣
T =const

. (B13)

Here, we take into account that the correction δn′(x) is caused
by redistribution of carriers but not by heating. In contrast, the
correction δσheat(x) is due to heating at a fixed carrier density:

δσheat(x) = h0(x)δεheat(x), h0(x) = δσ0(x)

δε0(x)

∣∣∣∣
n=const

, (B14)

where ε0(x) is the average electron energy in equilibrium
and δεheat(x) is a local change of the electron average energy
caused by the THz radiation. As above, the index “0” denotes
functions calculated in the absence of radiation and dependent
on the coordinate x due to the x dependence of the static
potential V . The change δεheat(x) is found from the energy
balance equation

n0(x)δεheat(x)

τε

= 2|E(x)|2 σ0(x)

1 + (ωτ )2
, (B15)

where τε is the energy relaxation time. Thus, Eq. (B12) reduces
to the equation

j = −1

e

dV(x)

dx
[g0(x)δn′(x) + h0(x)δεheat(x)] − eD0

dδn′(x)

dx

(B16)

containing one unknown function δn′(x).
Under the requirement of coordinate independence of j ,

Eq. (B16) forms a first-order differential equation for the
correction δn′(x). Its solution is given by

δn′(x) = e−F0(x)
{
δn′(−d/2)

− 1

eD0

∫ x

−d/2
dx ′eF0(x ′)

[
1

e

dV
dx ′ h0(x ′)δεheat(x

′)+j

]}
,

(B17)

where

F0(x) = 1

e2D0

∫ x

−d/2
dx1

dV(x1)

dx1
g0(x1), (B18)

and a value of δn′(−d/2) is determined from the condition
(B4). Moreover, after averaging over the space period in
Eq. (B16) the third contribution vanishes and we obtain

j = −1

e

〈
dV
dx

[g0(x)δn′(x) + h0(x)δεheat(x)]

〉
, (B19)

where the angular brackets mean averaging over x. According
to Eq. (B17), the correction δn′(x) depends linearly on j .
Therefore, Eq. (B19) is just a linear algebraic equation for
the Seebeck ratchet photocurrent. Substituting δn′(x) from
Eq. (B17) and noticing that the term with δn′(−d/2) does not
contribute to the current [because the function F0(x) depends
on the coordinate x via the static potential V(x)] we finally
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obtain

j = − 1

e(1 − α)

〈
δεheat(x)

dV
dx

h0(x)

×
[

1 − eF0(x)
∫ d/2

x

dx ′e−F0(x ′) dV
dx ′

g0(x ′)
e2D0

]〉
, (B20)

where

α = 2

e2D0

∫ d/2

0

dx ′

d
eF0[V(x ′)]

∫ V(d/2)

V(x ′)
dVg0(V )e−F0(V ).

(B21)

Now, we calculate the variational derivatives g0(x) and
h0(x). The even part of the distribution function modified by
the temperature change δT (x) is given by

f +
k =

{
exp

[εk − εF − δεF(x) + V(x)

T + δT (x)]
+ 1

}−1

, (B22)

where δT (x) is a radiation-induced change of the local electron
temperature and, in contrast to Eq. (B10), the correction δεF(x)
is varying in space due to the electron redistribution following
the inhomogeneous heating. The functions δσ0(x), δε0(x), and
δn0(x) are expressed via δεF(x) and δT (x):

δσ0(x) = ∂σ0

∂εF
δεF(x) + ∂σ0

∂T
δT (x), (B23)

δε0(x) = δε0

δεF(x)
δεF(x) + δε0

δT (x)
δT (x), (B24)

δn0(x) = δn0

δεF
δεF(x) + δn0

δT (x)
δT (x), (B25)

from whence we obtain

g0(x) = ∂σ0/∂εF

∂n0/∂εF
, h0(x) = �−

σn

�−
εn

, (B26)

�−
σn = ∂σ0

∂εF

∂n0

∂T
− ∂σ0

∂T

∂n0

∂εF
, �−

εn = ∂ε0

∂εF

∂n0

∂T
− ∂ε0

∂T

∂n0

∂εF
.

In equilibrium, the concentration, average particle energy,
and conductivity are obtained from the corresponding values
in unstructured graphene n0(εF), ε0(εF), and σ0(εF), by the
substitution

εF → εF − V(x). (B27)

These values depend on the Fermi energy and temperature as
follows (kB ≡ 1, spin and valley degeneracies are taken into
account):

n0 = T 2

π (�v0)2

[
ε2

F

T 2
+ π2

3
+ 2Li2

(−e− εF
T

)]
, (B28)

n0ε0 = 2T 3

3π (�v0)2

[
ε3

F

T 3
+ π2 εF

T
+ 3Li3

(−e− εF
T

)]
, (B29)

σ0 = 2T e2D0

π (�v0)2
ln

(
1 + e

εF
T

)
. (B30)

Here, Li2,3(z) are the polylogarithm functions of orders 2
and 3, respectively. At T � εF these expressions reduce with

accuracy up to (T/εF)2:

n0 = 1

π (�v0)2

(
ε2

F + π2

3
T 2

)
, (B31)

ε0 = 2

3
εF + 4π2

9

T 2

εF
, σ0 = 2εFe

2D0

π (�v0)2
. (B32)

This allows us to calculate the functions g0(x) and h0(x):

g0(x) = e2D0

εF − V(x)
, h0(x) = − e2D0

π (�v0)2
. (B33)

Then, we obtain

F0(x) = ln

[
εF − V(d/2)

εF − V(x)

]
, (B34)

α = 1 −
〈
εF − V(d/2)

εF − V(x)

〉
, (B35)

and proceed from Eq. (B20) for the ratchet current to

j = eτ

2π�2

〈
δεheat(x)

dV
dx

1

εF − V(x)

〉〈
1

εF − V(x)

〉−1

. (B36)

The energy balance equation (B15) yields

δεheat(x) = 2|E|2 e2v2
0τ

1 + (ωτ )2

τε

εF − V(x)
. (B37)

Therefore, we finally arrive at

j = e3v2
0

π�2

τ 2τε

1 + (ωτ )2

〈|E(x)|2 d
dx

[εF − V(x)]−1
〉

〈[εF − V(x)]−1〉 . (B38)

For ratchets based on quantum-well structures with a
parabolic energy dispersion εk = �

2k2/(2m), the analogous
procedure yields the Seebeck ratchet current density in the
form

j = n̄eτ

mεF

〈
εF − V(d/2)

εF − V(x)

〉−1〈
δεheat(x)

d

dx

×
{

3V(x) + 2[εF − V(d/2)] ln

[
εF − V(d/2)

εF − V(x)

]}〉
.

(B39)

In this case, δεheat(x) is given by

δεheat(x) = 2|E(x)|2 e2ττε/m

1 + (ωτ )2
. (B40)

APPENDIX C: DIFFERENTIAL PLASMONIC
DRAG IN GRAPHENE

Let us consider a homogeneous graphene screened by an
interdigitated metal DGG. We simulate the plasmonic response
of graphene by solving the hydrodynamic equations

e
∂n(x,t)

∂t
+ ∂j (x,t)

∂x
= 0, (C1)

∂v(x,t)

∂t
+ v(x,t)

∂v(x,t)

∂x
+ v(x,t)

εF(x,t)

∂εF(x,t)

∂t

= ev2
0

εF(x,t)
E(x,t) − v(x,t)

τ
, (C2)
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describing the free-carrier motion in graphene, where j (x,t) =
en(x,t)v(x,t) is the electric (in general, nonlinear) current in
graphene, n(x,t) and v(x,t) are the charge density and hy-
drodynamic velocity of the carriers in graphene, respectively,
εF(x,t) is the Fermi energy in graphene related to the carrier
density as εF(x,t) = −sgn(e)�v0

√
πn(x,t) [71], E(x,t) is the

in-plane electric near field. Equations (C1) and (C2) are taken
from Ref. [71] by approximating the carrier momentum p(x,t)
for small carrier velocities v(x,t) < vF by

p(x,t) = −sgn(e)
εF(x,t)

v2
0

v(x,t).

Strictly speaking, the latter equation is valid for zero temper-
ature. However, as mentioned in Sec. V A, the free-carrier
gas in doped (or gated) graphene is degenerate even at
room temperature so that this expression is relevant also for
room temperature. We also neglect the terms describing the
carrier pressure and viscosity contributions in Eq. (C2) which
are responsible for the nonlocality effects in the plasmonic
response.

Nonlinearity of the free-carrier motion in graphene de-
scribed by Eqs. (C1) and (C2) originates from (i) the product
n(x,t)v(x,t) defining the conductive current j (x,t), (ii) the
second term in Eq. (C2) describing the nonlinear convection
current, and (iii) the dependence of the oscillating Fermi
energy εF(x,t) on the applied electric-field amplitude E(x,t).
It is worth noting that all the three sources of the nonlinearity
survive only if an inhomogeneous (i.e., the x-dependent)
carrier-density oscillations occur in graphene. Therefore, these
nonlinearities essentially are of the plasmonic nature.

We solved the hydrodynamic equations (C1) and (C2) in
the perturbation approach [72] by expanding every unknown
variable in powers of the electric field amplitude and keeping
only linear and quadratic terms in this expansion. Then, the
induced current density in graphene is given by j (x,t) =
en0v1(x,t) + en1(x,t)v1(x,t), where n0 is the equilibrium car-
rier density, and n1(x,t) and v1(x,t) are the linear corrections
to the density and velocity of free carriers in graphene,
respectively.

Time averaging of j (x,t) yields the rectified current

jpl = − 2e3τ 2v2
0

π�2ω(τ 2ω2 + 1)

∑
q

q(|Eq |2 − |E−q |2), (C3)

where Eq are the amplitudes of the spatial Fourier harmonics
of the plasmonic electric field E(x) [see Eq. (15)]. It follows
from Eq. (C3) that the dc photocurrent appears only for
Eq �= E−q , due to the differential drag of the carriers by
the counter-directed Fourier harmonics of the plasmonic near
field. The differential plasmonic photocurrent has the opposite
polarities depending on the electron or hole conductivity of
graphene. In distinction from conventional 2D electron system
[38], the prefactor in the sum (C3) is independent of the
equilibrium carrier density which means that Eq. (C3) for
the differential plasmonic-drag current is valid for both a
homogeneous and periodically modulated graphene. However,
additional contributions to the plasmonic ratchet photocurrent,
which can appear in graphene with spatially modulated carrier
density, requires further analysis.
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