61 research outputs found

    Thermodynamic potential of Rankine and flash cycles for waste heat recovery in a heavy duty Diesel engine

    Get PDF
    In heavy duty Diesel engines more than 50% of the fuel energy is not converted to brake power, but is lost as heat. One promising way to recapture a portion of this heat and convert it to power is by using thermodynamic power cycles. Using the heavy duty Diesel engine as the waste heat source, this paper evaluates and compares the thermodynamic potential of different working fluids in four power cycles: the Rankine cycle (RC), the transcritical Rankine cycle (TRC), the trilateral flash cycle (TFC) and the single flash cycle (SFC). To establish the heat input into the cycle, operating conditions from an actual heavy duty Diesel engine are used as boundary conditions for the cycle heat source. A GT-Power model of the engine was previously developed and experimentally validated for the stationary points in the European Stationary Cycle (ESC). An energy analysis of this engine revealed that it has four heat sources with the potential for waste heat recovery: the charge air cooler (CAC), the coolant flow, the exhaust gas recirculation cooler (EGRC), and the exhaust flow. Using fixed heat input conditions determined by the selected engine operating mode, the TFC performed best for the CAC with a net power increase of around 2 kW, while the RC performed best for the coolant flow, with a net power increase of 5 kW. For the EGRC, ethanol performed especially well with both the RC and TRC, leading to an 8 kW net power increase. When using the exhaust as heat source, all four cycles provided a power output of around 5 kW with some variation depending on the working fluid. This study shows that for most cases, considering the different heat sources, the choice of cycle has a larger impact on the cycle performance than the choice of working fluid

    Performance Analysis of a Reciprocating Piston Expander and a Plate Type Exhaust Gas Recirculation Boiler in a Water-Based Rankine Cycle for Heat Recovery from a Heavy Duty Diesel Engine

    Get PDF
    The exhaust gas in an internal combustion engine provides favorable conditions for a waste-heat recovery (WHR) system. The highest potential is achieved by the Rankine cycle as a heat recovery technology. There are only few experimental studies that investigate full-scale systems using water-based working fluids and their effects on the performance and operation of a Rankine cycle heat recovery system. This paper discusses experimental results and practical challenges with a WHR system when utilizing heat from the exhaust gas recirculation system of a truck engine. The results showed that the boiler’s pinch point necessitated trade-offs between maintaining adequate boiling pressure while achieving acceptable cooling of the EGR and superheating of the water. The expander used in the system had a geometric compression ratio of 21 together with a steam outlet timing that caused high re-compression. Inlet pressures of up to 30 bar were therefore required for a stable expander power output. Such high pressures increased the pump power, and reduced the EGR cooling in the boiler because of pinch-point effects. Simulations indicated that reducing the expander’s compression ratio from 21 to 13 would allow 30% lower steam supply pressures without adversely affecting the expander’s power output

    Inter-rater reliability of direct observations of the physical and psychosocial working conditions in eldercare: An evaluation in the DOSES project

    Get PDF
    The aim of the study was to develop and evaluate the reliability of the “Danish observational study of eldercare work and musculoskeletal disorders” (DOSES) observation instrument to assess physical and psychosocial risk factors for musculoskeletal disorders (MSD) in eldercare work. During 1.5 years, sixteen raters conducted 117 inter-rater observations from 11 nursing homes. Reliability was evaluated using percent agreement and Gwet's AC1 coefficient. Of the 18 examined items, inter-rater reliability was excellent for 7 items (AC1>0.75) fair to good for 7 items (AC1 0.40–0.75) and poor for 2 items (AC1 0–0.40). For 2 items there was no agreement between the raters (AC1 <0). The reliability did not differ between the first and second half of the data collection period and the inter-rater observations were representative regarding occurrence of events in eldercare work. The instrument is appropriate for assessing physical and psychosocial risk factors for MSD among eldercare workers

    Revealing the invisible dead: integrating bio-geoarchaeological approaches in an apparently "empty" Viking-Age equestrian burial

    Get PDF
    Conference 26 - 27 May 2022 Microarchaeology: making visible the invisible archaeological record through high-resolution integrated approaches Coordination: Marta Portillo (IMF-CSIC), Aroa García-Suárez (IMF-CSIC), Juan Francisco Gibaja (EEHAR-CSIC) & Antonio Pizzo (EEHAR-CSIC)In 2017, a team of archaeologists and specialists investigated the apparently empty and partly disturbed Viking-Age equestrian burial of Fregerslev II, Denmark. This did not only provide a once in a lifetime opportunity to excavate such an elite grave, now with much more modern techniques than during earlier excavations of similar graves, but also to develop a novel multi-scale and multi-method analysis of burial and post-burial processes. To overcome the limitations of poor preservation and the lack of a clear macrostratigraphic sequence, multi-proxy analyses of organic and inorganic materials were combined to study the burial and its spatial organization as well as post-depositional processes. Techniques applied includedsoil chemistry (inductively coupled plasma mass spectrometry - ICPMS, portable X-ray fluorescence spectrometer - pXRF), soil micromorphology, analysis of faecal lipid biomarkers and analysis of wood, botanical macroremains, phytoliths, pollen and non-pollen palynomorphs. This presentation will present the highlights of the results of the various analyses, showing the potential and relevance of integrating high-resolution approaches for the analysis of poorly preserved burial contexts

    Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome

    Get PDF
    BACKGROUND: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. METHODS: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. RESULTS: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P&lt;5×10-8) near NOS1AP, KCNQ1, and KLF12, and 1 missense variant in KCNE1(p.Asp85Asn) at the suggestive threshold (P&lt;10-6). Heritability analyses showed that ≈15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP 0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (rg=0.40; P=3.2×10-3). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P&lt;10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P&lt;0.005). CONCLUSIONS: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.</p

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons. A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology

    Drowning in data, thirsty for information and starved for understanding: A biodiversity information hub for cooperative environmental monitoring in South Africa

    Get PDF
    The world is firmly cemented in a notitian age (Latin: notitia, meaning data) – drowning in data, yet thirsty for information and the synthesis of knowledge into understanding. As concerns over biodiversity declines escalate, the volume, diversity and speed at which new environmental and ecological data are generated has increased exponentially. Data availability primes the research and discovery engine driving biodiversity conservation. South Africa (SA) is poised to become a world leader in biodiversity conservation. However, continent-wide resource limitations hamper the establishment of inclusive technologies and robust platforms and tools for biodiversity informatics. In this perspectives piece, we bring together the opinions of 37 co-authors from 20 different departments, across 10 SA universities, 7 national and provincial conservation research agencies, and various institutes and private conservation, research and management bodies, to develop a way forward for biodiversity informatics in SA. We propose the development of a SA Biodiversity Informatics Hub and describe the essential components necessary for its design, implementation and sustainability. We emphasise the importance of developing a culture of cooperation, collaboration and interoperability among custodians of biodiversity data to establish operational workflows for data synthesis. However, our biggest challenges are misgivings around data sharing and multidisciplinary collaboration

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects
    corecore