164 research outputs found

    A Wireless Micro Inertial Measurement Unit (IMU)

    Full text link

    Electron detachment from negative ions in bichromatic laser field

    Full text link
    Negative ion detachment in two-colour laser field is considered within the recent modification of Keldysh model which makes it quantitatively reliable. The general approach is illustrated by calculation of angular differential detachment rates, partial rates for particular ATD (Above Threshold Detachment) channels and total detachment rates for H^- ion in bichromatic field with 1:2 frequency ratio. Both perturbative and strong field regimes are examined. Polar asymmetry and phase effects are quantitatively characterized with some new features revealed. Phase effects are found to result in a huge anisotropy factor 103\sim 10^3 in the electron angular distribution in the perturbative regime.Comment: 13 pages, 8 figures in separate files which are not incorporated in the latex file of the pape

    New International Guidelines and Consensus on the Use of Lung Ultrasound

    Get PDF
    Following the innovations and new discoveries of the last 10 years in the field of lung ultrasound (LUS), a multidisciplinary panel of international LUS experts from six countries and from different fields (clinical and technical) reviewed and updated the original international consensus for point-of-care LUS, dated 2012. As a result, a total of 20 statements have been produced. Each statement is complemented by guidelines and future developments proposals. The statements are furthermore classified based on their nature as technical (5), clinical (11), educational (3), and safety (1) statements

    Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy

    Get PDF
    Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies

    Hierarchical regulation of the NikR-mediated nickel response in Helicobacter pylori

    Get PDF
    Nickel is an essential metal for Helicobacter pylori, as it is the co-factor of two enzymes crucial for colonization, urease and hydrogenase. Nickel is taken up by specific transporters and its intracellular homeostasis depends on nickel-binding proteins to avoid toxicity. Nickel trafficking is controlled by the Ni(II)-dependent transcriptional regulator NikR. In contrast to other NikR proteins, NikR from H. pylori is a pleiotropic regulator that depending on the target gene acts as an activator or a repressor. We systematically quantified the in vivo Ni2+-NikR response of 11 direct NikR targets that encode functions related to nickel metabolism, four activated and seven repressed genes. Among these, four targets were characterized for the first time (hpn, hpn-like, hydA and hspA) and NikR binding to their promoter regions was demonstrated by electrophoretic mobility shift assays. We found that NikR-dependent repression was generally set up at higher nickel concentrations than activation. Kinetics of the regulation revealed a gradual and temporal NikR-mediated response to nickel where activation of nickel-protection mechanisms takes place before repression of nickel uptake. Our in vivo study demonstrates, for the first time, a chronological hierarchy in the NikR-dependent transcriptional response to nickel that is coherent with the control of nickel homeostasis in H. pylori

    Micro-CT based finite element models of cancellous bone predict accurately displacement once the boundary condition is well replicated: A validation study

    Get PDF
    Non-destructive 3D micro-computed tomography (microCT) based finite element (microFE) models are used to estimate bone mechanical properties at tissue level. However, their validation remains challenging. Recent improvements in the quantification of displacements in bone tissue biopsies subjected to staged compression, using refined Digital Volume Correlation (DVC) techniques, now provide a full field displacement information accurate enough to be used for microFE validation. In this study, three specimens (two humans and one bovine) were tested with two different experimental set-ups, and the resulting data processed with the same DVC algorithm. The resulting displacement vector field was compared to that predicted by microFE models solved with three different boundary conditions (BC): nominal force resultant, nominal displacement resultant, distributed displacement. The first two conditions were obtained directly from the measurements provided by the experimental jigs, whereas in the third case the displacement field measured by the DVC in the top and bottom layer of the specimen was applied. Results show excellent relationship between the numerical predictions (x) and the experiments (y) when using BC derived from the DVC measurements (UX: y=1.07x-0.002, RMSE: 0.001 mm; UY: y=1.03x-0.001, RMSE: 0.001 mm; UZ: y=x+0.0002, RMSE: 0.001 mm for bovine specimen), whereas only poor correlation was found using BCs according to experiment setups. In conclusion, microFE models were found to predict accurately the vectorial displacement field using interpolated displacement boundary condition from DVC measurement

    Adiabatic Theory of Electron Detachment from Negative Ions in Two-Color Laser Field

    Get PDF
    Negative ion detachment in bichromatic laser field is considered within the adiabatic theory. The latter represents a recent modification of the famous Keldysh model for multiphoton ionization which makes it quantitatively reliable. We calculate angular differential detachment rates, partial rates for particular ATD (Above Threshold Detachment) channels and total detachment rates for the Hydrogen ion in a bichromatic field with 1:3 frequency ratio and various phase differences. Reliability of the present, extremely simple approach is testified by comparison with much more elaborate earlier calculations.Comment: 22 pages, 6 Postscript figure
    corecore