149 research outputs found

    Characterisation of heat-induced protein aggregation in whey protein isolate and the influence of aggregation on the availability of amino groups as measured by the ortho-phthaldialdehyde (OPA) and trinitrobenzenesulfonic acid (TNBS) methods

    Get PDF
    Whey protein isolate (WPI) solutions, with different levels of aggregated protein, were prepared by heating (5% protein, pH 7, 90 °C for 30 min) WPI solutions with either 20 mM added NaCl (WPI + NaCl), 5 mM N-ethylmaleimide (WPI + NEM) or 20 mM added NaCl and 5 mM NEM (WPI + NaCl + NEM). Gel electrophoresis demonstrated that the heated WPI and WPI + NaCl solutions had higher levels of aggregated protein, due to more covalent interactions between proteins, than the heated WPI + NEM and WPI + NaCl + NEM solutions. There were marked differences in the levels of amino groups between all heated WPI solutions when measured by the OPA and TNBS methods, with lower levels being measured by the TNBS method than by the OPA method. These results demonstrate that the measurement of available amino groups by the OPA method is less impacted than by the TNBS method after heat-induced structural changes, arising from disulfide or sulfhydryl-disulfide bond-mediated aggregation of whey protein molecules

    Cytochrome P4501A biomarker indication of the timeline of chronic exposure of Barrow’s goldeneyes to residual Exxon Valdez oil

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Pollution Bulletin 62 (2011): 609-614, doi:10.1016/j.marpolbul.2010.11.015.We examined hepatic EROD activity, as an indicator of CYP1A induction, in Barrow's goldeneyes captured in areas oiled during the 1989 Exxon Valdez spill and those from nearby unoiled areas. We found that average EROD activity differed between areas during 2005, although the magnitude of the difference was reduced relative to a previous study from 1996/97, and we found that areas did not differ by 2009. Similarly, we found that the proportion of individuals captured from oiled areas with elevated EROD activity ( 2 times unoiled average) declined from 41% in winter 1996/97 to 10% in 2005 and 15% in 2009. This work adds to a body of literature describing the timelines over which vertebrates were exposed to residual Exxon Valdez oil and indicates that, for Barrow's goldeneyes in Prince William Sound, exposure persisted for many years with evidence of substantially reduced exposure by 2 decades after the spill.This research was supported primarily by the Exxon Valdez Oil Spill Trustee Council

    Evidence of two deeply divergent co-existing mitochondrial genomes in the Tuatara reveals an extremely complex genomic organization

    Get PDF
    Animal mitochondrial genomic polymorphism occurs as low-level mitochondrial heteroplasmy and deeply divergent co-existing molecules. The latter is rare, known only in bivalvian mollusks. Here we show two deeply divergent co-existing mt-genomes in a vertebrate through genomic sequencing of the Tuatara (Sphenodon punctatus), the sole-representative of an ancient reptilian Order. The two molecules, revealed using a combination of short-read and long-read sequencing technologies, differ by 10.4% nucleotide divergence. A single long-read covers an entire mt-molecule for both strands. Phylogenetic analyses suggest a 7–8 million-year divergence between genomes. Contrary to earlier reports, all 37 genes typical of animal mitochondria, with drastic gene rearrangements, are confirmed for both mt-genomes. Also unique to vertebrates, concerted evolution drives three near-identical putative Control Region non-coding blocks. Evidence of positive selection at sites linked to metabolically important transmembrane regions of encoded proteins suggests these two mt-genomes may confer an adaptive advantage for an unusually cold-tolerant reptile

    Comparing the Performances of Apes (Gorilla gorilla, Pan troglodytes, Pongo pygmaeus) and Human Children (Homo sapiens) in the Floating Peanut Task

    Get PDF
    Recently, Mendes et al. [1] described the use of a liquid tool (water) in captive orangutans. Here, we tested chimpanzees and gorillas for the first time with the same “floating peanut task.” None of the subjects solved the task. In order to better understand the cognitive demands of the task, we further tested other populations of chimpanzees and orangutans with the variation of the peanut initially floating or not. Twenty percent of the chimpanzees but none of the orangutans were successful. Additional controls revealed that successful subjects added water only if it was necessary to obtain the nut. Another experiment was conducted to investigate the reason for the differences in performance between the unsuccessful (Experiment 1) and the successful (Experiment 2) chimpanzee populations. We found suggestive evidence for the view that functional fixedness might have impaired the chimpanzees' strategies in the first experiment. Finally, we tested how human children of different age classes perform in an analogous experimental setting. Within the oldest group (8 years), 58 percent of the children solved the problem, whereas in the youngest group (4 years), only 8 percent were able to find the solution

    Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix

    Get PDF
    Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide) at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell–cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA) are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications

    Regulation and splicing of scavenger receptor class B type I in human macrophages and atherosclerotic plaques

    Get PDF
    BACKGROUND: The protective role of high-density lipoprotein (HDL) in the cardiovascular system is related to its role in the reverse transport of cholesterol from the arterial wall to the liver for subsequent excretion via the bile. Scavenger receptor class B type I (SR-BI) binds HDL and mediates selective uptake of cholesterol ester and cellular efflux of cholesterol to HDL. The role of SR-BI in atherosclerosis has been well established in murine models but it remains unclear whether SR-BI plays an equally important role in atherosclerosis in humans. The aim of this study was to investigate the expression of SR-BI and its isoforms in human macrophages and atherosclerotic plaques. METHODS: The effect of hypoxia and minimally modified low-density lipoprotein (mmLDL), two proatherogenic stimuli, on SR-BI expression was studied in human monocyte-derived macrophages from healthy subjects using real-time PCR. In addition, SR-BI expression was determined in macrophages obtained from subjects with atherosclerosis (n = 15) and healthy controls (n = 15). Expression of SR-BI isoforms was characterized in human atherosclerotic plaques and macrophages using RT-PCR and DNA sequencing. RESULTS: SR-BI expression was decreased in macrophages after hypoxia (p < 0.005). In contrast, SR-BI expression was increased by exposure to mmLDL (p < 0.05). There was no difference in SR-BI expression in macrophages from patients with atherosclerosis compared to controls. In both groups, SR-BI expression was increased by exposure to mmLDL (p < 0.05). Transcripts corresponding to SR-BI and SR-BII were detected in macrophages. In addition, a third isoform, referred to as SR-BIII, was discovered. All three isoforms were also expressed in human atherosclerotic plaque. Compared to the other isoforms, the novel SR-BIII isoform was predicted to have a unique intracellular C-terminal domain containing 53 amino acids. CONCLUSION: We conclude that SR-BI is regulated by proatherogenic stimuli in humans. However, we found no differences between subjects with atherosclerosis and healthy controls. This indicates that altered SR-BI expression is not a common cause of atherosclerosis. In addition, we identified SR-BIII as a novel isoform expressed in human macrophages and in human atherosclerotic plaques

    Cholangiocyte organoids can repair bile ducts after transplantation in the human liver.

    Get PDF
    Organoid technology holds great promise for regenerative medicine but has not yet been applied to humans. We address this challenge using cholangiocyte organoids in the context of cholangiopathies, which represent a key reason for liver transplantation. Using single-cell RNA sequencing, we show that primary human cholangiocytes display transcriptional diversity that is lost in organoid culture. However, cholangiocyte organoids remain plastic and resume their in vivo signatures when transplanted back in the biliary tree. We then utilize a model of cell engraftment in human livers undergoing ex vivo normothermic perfusion to demonstrate that this property allows extrahepatic organoids to repair human intrahepatic ducts after transplantation. Our results provide proof of principle that cholangiocyte organoids can be used to repair human biliary epithelium

    A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor

    Get PDF
    © 2019 Elsevier Inc. Embryonal tumors with multilayered rosettes (ETMRs) are highly lethal infant brain cancers with characteristic amplification of Chr19q13.41 miRNA cluster (C19MC) and enrichment of pluripotency factor LIN28A. Here we investigated C19MC oncogenic mechanisms and discovered a C19MC-LIN28A-MYCN circuit fueled by multiple complex regulatory loops including an MYCN core transcriptional network and super-enhancers resulting from long-range MYCN DNA interactions and C19MC gene fusions. Our data show that this powerful oncogenic circuit, which entraps an early neural lineage network, is potently abrogated by bromodomain inhibitor JQ1, leading to ETMR cell death. Sin-Chan et al. uncover a C19MC-LIN28A-MYCN super-enhancer-dependent oncogenic circuit in embryonal tumors with multilayered rosettes (ETMRs). The circuit entraps an early neural lineage network to sustain embryonic epigenetic programming and is vulnerable to bromodomain inhibition, which promotes ETMR cell death

    The hemispheric contrast in cloud microphysical properties constrains aerosol forcing

    Get PDF
    The change in planetary albedo due to aerosol−cloud interactions during the industrial era is the leading source of uncertainty in inferring Earth’s climate sensitivity to increased greenhouse gases from the historical record. The variable that controls aerosol−cloud interactions in warm clouds is droplet number concentration. Global climate models demonstrate that the present-day hemispheric contrast in cloud droplet number concentration between the pristine Southern Hemisphere and the polluted Northern Hemisphere oceans can be used as a proxy for anthropogenically driven change in cloud droplet number concentration. Remotely sensed estimates constrain this change in droplet number concentration to be between 8 cm−3 and 24 cm−3. By extension, the radiative forcing since 1850 from aerosol−cloud interactions is constrained to be −1.2 W⋅m−2 to −0.6 W⋅m−2. The robustness of this constraint depends upon the assumption that pristine Southern Ocean droplet number concentration is a suitable proxy for preindustrial concentrations. Droplet number concentrations calculated from satellite data over the Southern Ocean are high in austral summer. Near Antarctica, they reach values typical of Northern Hemisphere polluted outflows. These concentrations are found to agree with several in situ datasets. In contrast, climate models show systematic underpredictions of cloud droplet number concentration across the Southern Ocean. Near Antarctica, where precipitation sinks of aerosol are small, the underestimation by climate models is particularly large. This motivates the need for detailed process studies of aerosol production and aerosol−cloud interactions in pristine environments. The hemispheric difference in satellite estimated cloud droplet number concentration implies preindustrial aerosol concentrations were higher than estimated by most models
    corecore