56 research outputs found

    Microwave emission from the moon

    Get PDF
    Measurements of the microwave emission from the moon and their interpretation in terms of the thermophysics of that body are reviewed. Variations of the brightness temperatures of the moon during a lunation and during eclipses when combined with infrared and radar measurements yield a precise set of physical parameters for the upper few meters of the lunar soil. These parameters include the density, thermal conductivity, dielectric constant, radio absorption coefficients, and the mean temperature gradiant

    Microwave spectroscopy of the Mars atmosphere

    Get PDF
    A study of the use of millimeter-wavelength spectral transitions to investigate the atmosphere of Mars is presented. In the model experiments investigated it is assumed that a spectrometer in the frequency range from 100 to 260 GHz looks into a modest-sized telescope of from 30 to 50 cm aperture from a near-Mars orbit. The molecules H2O, CO, O2, O3, and H2O2 all have intense spectral lines in the Mars atmosphere in this frequency range and in addition are all very important in understanding the water cycle, the photochemistry, and the circularization in that atmosphere. It is shown that the altitude and the zonal distribution of H2O can be mapped even in atmospheric columns as dry as 0.25 precipital μm. Ozone can be mapped over the entire planet, independent of solar-lighting conditions, dust loading, or clouds in the atmosphere, because millimeter waves are insensitive to any particles that can be suspended in the Mars atmosphere. Because the signal-receiving techniques use superheterodyne devices and narrow spectral lines, zonal and meridional winds can be measured at altitudes above 10 km with a precision approaching approximately 3 m/s by the use of Doppler shifts. Temperature–pressure profiles can be measured to altitudes of 100 km by the use of CO lines in the limb-sounding mode

    Analysis of Viking infrared thermal mapping data of Mars. The effects of non-ideal surfaces on the derived thermal properties of Mars

    Get PDF
    The thermal interia of the surface of Mars varies spatially by a factor of eight. This is attributable to changes in the average particle size of the fine material, the surface elevation, the atmospheric opacity due to dust, and the fraction of the surface covered by rocks and fine material. The effects of these non-ideal properties on the surface temperatures and derived thermal inertias are modeled, along with the the effects of slopes, CO2 condensed onto the surface, and layering of fine material upon solid rock. The non-ideal models are capable of producing thermal behavior similar to that observed by the Viking Infrared Thermal Mapper, including a morning delay in the post-dawn temperature rise and an enhanced cooling in the afternoon relative to any ideal, homogeneous model. The enhanced afternoon cooling observed at the Viking-1 landing site is reproduced by the non-ideal models while that atop Arsia Mons volcano is not, but may be attributed to the observing geometry

    CO on Titan: More Evidence for a Well-Mixed Vertical Profile

    Full text link
    We report new interferometric observations of the CO (2-1) rotational transition on Titan. We find that the spectrum is best fit by a uniform profile of 52 ppm, with estimated errors of 6 ppm (40 to 200 km) and 12 ppm (200 to 300 km).Comment: Submitted to as a Note to Icarus. Uses emulateapj.sty under Latex, 6 text pages, 2 figs (includes with psfig

    The relationship between the system of astronomical constants and the radar determinations of the astronomical unit

    Get PDF
    Radar determinations of astronomical unit, speed of light, solar parallax, and other constant

    Gravitational radiospectrometer

    Full text link
    Gravitational lensing is predicted by general relativity and is found in observations. When a gravitating body is surrounded by a plasma, the lensing angle depends on a frequency of the electromagnetic wave due to refraction properties, and the dispersion properties of the light propagation in plasma. The last effect leads to dependence, even in the uniform plasma, of the lensing angle on the frequency, what resembles the properties of the refractive prism spectrometer. The strongest action of this spectrometer is for the frequencies slightly exceeding the plasma frequency, what corresponds to very long radiowaves.Comment: 11 pages, 2 figure

    Titan's lakes chemical composition: sources of uncertainties and variability

    Full text link
    Between 2004 and 2007 the instruments of the CASSINI spacecraft discovered hydrocarbon lakes in the polar regions of Titan. We have developed a lake-atmosphere equilibrium model allowing the determination of the chemical composition of these liquid areas. The model is based on uncertain thermodynamic data and precipitation rates of organic species predicted to be present in the lakes and seas that are subject to spatial and temporal variations. Here we explore and discuss the influence of these uncertainties and variations. The errors and uncertainties relevant to thermodynamic data are simulated via Monte-Carlo simulations. Global Circulation Models (GCM) are also employed in order to investigate the possibility of chemical asymmetry between the south and the north poles, due to differences in precipitation rates. We find that mole fractions of compounds in the liquid phase have a high sensitivity to thermodynamic data used as inputs, in particular molar volumes and enthalpies of vaporization. When we combine all considered uncertainties, the ranges of obtained mole fractions are rather large (up to ~8500%) but the distributions of values are narrow. The relative standard deviations remain between 10% and ~300% depending on the compound considered. Compared to other sources of uncertainties and variability, deviation caused by surface pressure variations are clearly negligible, remaining of the order of a few percent up to ~20%. Moreover no significant difference is found between the composition of lakes located in north and south poles. Because the theory of regular solutions employed here is sensitive to thermodynamic data and is not suitable for polar molecules such as HCN and CH3CN, our work strongly underlines the need for experimental simulations and the improvement of Titan's atmospheric models.Comment: Accepted in Planetary and Space Scienc

    Earth-based detection of the millimetric thermal emission of the nucleus of comet 8P/Tuttle

    Full text link
    Little is known about the physical properties of cometary nuclei. Apart from space mission targets, measuring the thermal emission of a nucleus is one of the few means to derive its size, independently of its albedo, and to constrain some of its thermal properties. This emission is difficult to detect from Earth but space telescopes (Infrared Space Observatory, Spitzer Space Telescope, Herschel Space Observatory) allow reliable measurements in the infrared and the sub-millimetre domains. We aim at better characterizing the thermal properties of the nucleus of comet 8P/Tuttle using multi-wavelentgh space- and ground-based observations, in the visible, infrared, and millimetre range. We used the Plateau de Bure Interferometer to measure the millimetre thermal emission of comet 8P/Tuttle at 240 GHz (1.25 mm) and analysed the observations with the shape model derived from Hubble Space Telescope observations and the nucleus size derived from Spitzer Space Telescope observations. We report on the first detection of the millimetre thermal emission of a cometary nucleus since comet C/1995 O1 Hale-Bopp in 1997. Using the two contact spheres shape model derived from Hubble Space Telescope observations, we constrained the thermal properties of the nucleus. Our millimetre observations are best match with: i) a thermal inertia lower than ~10 J K-1 m-2 s-1/2, ii) an emissivity lower than 0.8, indicating a non-negligible contribution of the colder sub-surface layers to the outcoming millimetre flux.Comment: 7 pages. Accepted for publication in Astronomy & Astrophysic
    • …
    corecore