330 research outputs found

    Mass transfer efficiency of a tall and low plate free area liquid pulsed sieve-plate extraction column

    Get PDF
    Acknowledgements The authors would like to acknowledge Chakwal group of industries for funding the project. Ms. Madiha, Ms. Zona, Mr. Sohaib, Mr. Abdullah, Mr. Mudassar, and Mr. Salahuddin also deserve our acknowledgements for their assistance in different ways.Peer reviewedPublisher PD

    Four-Face Heated Uniaxial Reinforced Concrete Columns Interaction Charts

    Get PDF
    This paper presents an analytical method for generating the interaction diagrams of uniaxially reinforced concrete (RC) columns that are subjected to four-face heating. Twenty-one (21) specimens obtained from previous case studies that were subjected to four-face heating (with different fire test times ranging from 63 to 356 fire minutes) are used to validate the proposed uniaxial interaction charts. The results obtained from the case studies and from the proposed charts are also compared with the finite element software (FIN EC). The 500°C isotherm as well as the zone method are used in the computer software program to find the required load capacities. The proposed method's values fall within the range of values obtained from laboratory tests and computer software, which suggests its validity. Also, the zone method in FIN-EC software is reliable for evaluating load-bearing capacity, while the 500°C method is useful in situations with shorter fire times. The results obtained provide a valuable tool for designing and evaluating structures that may be exposed to fire. Nonetheless, the study is restricted by its concentration on a particular type of column under four-face heating, which may reduce its relevance to other types of structures and heating situations. Doi: 10.28991/CEJ-2023-09-07-01 Full Text: PD

    Precision Medicine Informatics: Principles, Prospects, and Challenges

    Get PDF
    Precision Medicine (PM) is an emerging approach that appears with the impression of changing the existing paradigm of medical practice. Recent advances in technological innovations and genetics, and the growing availability of health data have set a new pace of the research and imposes a set of new requirements on different stakeholders. To date, some studies are available that discuss about different aspects of PM. Nevertheless, a holistic representation of those aspects deemed to confer the technological perspective, in relation to applications and challenges, is mostly ignored. In this context, this paper surveys advances in PM from informatics viewpoint and reviews the enabling tools and techniques in a categorized manner. In addition, the study discusses how other technological paradigms including big data, artificial intelligence, and internet of things can be exploited to advance the potentials of PM. Furthermore, the paper provides some guidelines for future research for seamless implementation and wide-scale deployment of PM based on identified open issues and associated challenges. To this end, the paper proposes an integrated holistic framework for PM motivating informatics researchers to design their relevant research works in an appropriate context.Comment: 22 pages, 8 figures, 5 tables, journal pape

    The effect of mesoporous silica impregnation on tribo-electrification characteristics of flurbiprofen

    Get PDF
    Tribo-electrification is a common occurrence within the pharmaceutical industry where solid dosage forms constitute majority of pharmaceutical formulations. Tribo-electrification of powders leads to a range of complications such as adhesion of particulate material to the processing equipment resulting in segregation, affecting the content uniformity. Flurbiprofen, a highly charging material, was used as a model drug to investigate the tribo-electrification and adhesion characteristics by impregnating the model drug inside a mesoporous silica matrix. The model drug was impregnated using i) solvent loading, and ii) physical mixing methods, at varying degree of silica to drug ratio (5-20% w/w). The resulting mixtures were tribo-charged using a custom built device based on a shaking concept inside a stainless steel capsule, consisting of a Faraday cup and connected to electrometer. The electrostatic charge and the percentage adhesion of Flurbiprofen were reduced in both drug loading methods. The solvent impregnation method using acetone was more successful at reducing the electrostatic charge build up on flurbiprofen than physical powder mixing. The percentage adhesion to the shaking capsule was reduced notably as a result of loading the drug in the SBA-15 porous network. The results illustrate that the incorporation of highly charged model drug inside a low-charging pharmaceutical carrier system to be an effective approach in control the induction of tribo-electrification phenomena during powder processing

    Can bacterial endophytes be used as a promising bio-inoculant for the mitigation of salinity stress in crop plants? : a global meta-analysis of the last decade (2011-2020)

    Get PDF
    Soil salinity is a major problem affecting crop production worldwide. Lately, there have been great research efforts in increasing the salt tolerance of plants through the inoculation of plant growth-promoting endophytic bacteria. However, their ability to promote plant growth under no-stress and salinity-stress conditions remains largely uncertain. Here, we carried out a global meta-analysis to quantify the plant growth-promoting effects (improvement of morphological attributes, photosynthetic capacity, antioxidative ability, and ion homeostasis) of endophytic bacteria in plants under no-stress and salinity-stress conditions. In addition, we elucidated the underlying mechanisms of growth promotion in salt-sensitive (SS) and salt-tolerant (ST) plants derived from the interaction with endophytic bacteria under no-stress and salinity-stress conditions. Specifically, this work encompassed 42 peer-reviewed articles, a total of 77 experiments, and 24 different bacterial genera. On average, endophytic bacterial inoculation increased morphological parameters. Moreover, the effect of endophytic bacteria on the total dry biomass, number of leaves, root length, shoot length, and germination rate was generally greater under salinity-stress conditions than no-stress conditions. On a physiological level, the relative better performance of the bacterial inoculants under the salinity-stress condition was associated with the increase in total chlorophyll and chlorophyll-b, as well as with the decrease of 1-aminocylopropane-1-carboxylate concentration. Moreover, under the salinity-stress condition, bacterial inoculation conferred a significantly higher increase in root K+ concentration and decrease in leaf Na+ concentration than under the no-stress condition. In SS plants, bacterial inoculation induced a higher increase in chlorophyll-b and superoxide dismutase activity, as well as a higher decrease in abscisic acid content, than in ST plants. Under salinity-stress, endophytic bacterial inoculation increased root K+ concentration in both SS and ST plants but decreased root Na+ concentration only in ST plants. Overall, this meta-analysis suggests that endophytic bacterial inoculation is beneficial under both no salinity-stress and salinity-stress conditions, but the magnitude of benefit is definitely higher under salinity-stress conditions and varies with the salt tolerance level of plants

    Can sulphur improve the nutrient uptake, partitioning, and seed yield of sesame?

    Get PDF
    Sulphur (S) is considered to improve the nutrient uptake of plants due to its synergistic relationship with other nutrients. This could ultimately enhance the seed yield of oilseed crops. However, there is limited quantitative information on nutrient uptake, distribution, and its associated impacts on seed yield of sesame under the S application. Thus, a two-year field study (2018 and 2019) was conducted to assess the impacts of different S treatments (S-0 = Control, S-20 = 20, S-40 = 40, and S-60 = 60 kg ha(-1)) on total dry matter production, nitrogen, phosphorus, potassium, S uptake and distribution at the mid-bloom stage and physiological maturity. Furthermore, treatment impacts were studied on the number of capsules per plant, number of seeds per capsule, thousand seed weight, and seed yield at physiological maturity in sesame. Compared to S-0, over the years, treatment S-40 significantly increased the total uptake of nitrogen, phosphorus, potassium, and S (by 13, 22, 11% and 16%, respectively) at physiological maturity, while their distribution by 13, 36, 14, and 24% (in leaves), 12, 15, 11, and 15% (in stems), 15, 42, 18, and 10% (in capsules), and 14, 22, 9, and 15% (in seeds), respectively. Enhanced nutrient uptake and distribution in treatment S-40 improved the total biomass accumulation (by 28%) and distribution in leaves (by 34%), stems (by 27%), capsules (by 26%), and seeds (by 28%), at physiological maturity, as compared to S-0. Treatment S-40 increased the number of capsules per plant (by 13%), number of seeds per capsule (by 11%), and thousand seed weight (by 6%), compared to S-0. Furthermore, over the years, relative to control, sesame under S-40 had a higher seed yield by 28% and enhanced the net economic returns by 44%. Thus, our results suggest that optimum S level at the time of sowing improves the nutrient uptake and distribution during the plant lifecycle, which ultimately enhances total dry matter accumulation, seed yield, and net productivity of sesame

    Visible light driven doped CeO2 for the treatment of pharmaceuticals in wastewater: A review

    Get PDF
    The high-level contamination of pharmaceuticals in aquatic environment, and their toxicities is a serious issue. This review highlights the use of ceria photocatalyst for treatment of pharmaceuticals. Cerium oxide (CeO2) with high oxygen storage, ecofriendly properties, reusability, and photostability contrary to other metal oxides photocatalysts is reportedly a better choice. However, ceria with high band gap energy show photoactivity mainly under UV light. This review highlights pharmaceuticals contamination in water, their contamination level, and toxicities and properties of CeO2 and different approaches used for extending photoactivity of CeO2 under visible irradiation. Metals and non-metals doping is found to promote greatly photoactivity of CeO2 under visible irradiation by narrowing band gap, shift in absorption edge to visible region, crystal defects and yield of oxygen vacancy, lower recombination of conduction band electrons and valence band holes and increasing surface area. The visible irradiation of CeO2 is found to produce hydroxyl radical (OH) and superoxide radical (O2 –) which contribute in pharmaceuticals degradation. The electron paramagnetic resonance spectroscopy and radical scavenger studies confirmed the formation of reactive oxygen species from CeO2 photoactivation. Doping was found to incorporate into the lattice of CeO2 and improve reusability and stability of CeO2 photocatalyst. The suggested mechanisms involved in the treatment of pharmaceuticals through OH and O2 – is discussed. Furthermore, the outlook and future challenges in the use CeO2 for photocatalytic degradation of pharmaceuticals and other organic pollutants are evaluated

    Development of Paracetamol-Caffeine co-crystals to improve compressional, formulation and in-vivo performance

    Get PDF
    Paracetamol, a frequently used antipyretic and analgesic drug, has poor compression moldability owing to its low plasticity. In this study, new co-crystals of paracetamol (PCM) with caffeine (as a co-former) were prepared and delineated. Co-crystals exhibited improved compaction and mechanical behavior. A screening study was performed by utilizing a number of methods namely dry grinding, liquid assisted grinding (LAG), solvent evaporation (SE) and anti-solvent addition using various weight ratios of starting materials. LAG and SE were found successful in the screening study. Powders at 1:1 and 2:1 weight ratio of PCM/CAF by LAG and SE respectively resulted in the formation of co-crystals. Samples were characterized by PXRD, DSC and ATR-FTIR techniques. Compressional properties of PCM and developed co-crystals were analyzed by in-die heckle model. Mean yield pressure (Py), an inverse measure of plasticity, obtained from the heckle plots decreased significantly (p<0.05) for co-crystals than pure drug. Intrinsic dissolution profile of co-crystals showed up to 2.84 fold faster dissolution than PCM and physical mixtures in phosphate buffer pH 6.8 at 37 oC. In addition co-crystals formulated into tablets by direct compression method showed better mechanical properties like hardness and tensile strength. In vitro dissolution studies on tablets also showed enhanced dissolution profiles (~90- 97%) in comparison to the tablets of PCM prepared by direct compression (~55%) and wet granulation (~85%) methods. In a single dose sheep model study co-crystals showed up to two fold increase in AUC and Cmax. A significant (p < 0.05) decrease in clearance as compared to pure drug was also recorded. In conclusion new co-crystals of PCM were successfully prepared with improved tabletability in-vitro and in-vivo profile. Enhancement in AUC and Cmax of PCM by co-crystallisation might suggest the dose reduction and avoidance of side effects

    Epitope Mapping of SERCA2a Identifies an Antigenic Determinant That Induces Mainly Atrial Myocarditis in A/J Mice

    Get PDF
    Sarcoplasmic/endoplasmic reticulum Ca2+ adenosine triphosphatase (SERCA)2a, a critical regulator of calcium homeostasis, is known to be decreased in heart failure. Patients with myocarditis or dilated cardiomyopathy develop autoantibodies to SERCA2a suggesting that they may have pathogenetic significance. In this report, we describe epitope mapping analysis of SERCA2a in A/J mice that leads us to make five observations: 1) SERCA2a contains multiple T cell epitopes that induce varying degrees of myocarditis. One epitope, SERCA2a 971–990, induces widespread atrial inflammation without affecting noncardiac tissues; the cardiac abnormalities could be noninvasively captured by echocardiography, electrocardiography, and magnetic resonance microscopy imaging. 2) SERCA2a 971–990-induced disease was associated with the induction of CD4 T cell responses and the epitope preferentially binds MHC class II/IAk rather than IEk. By creating IAk/and IEk/SERCA2a 971–990 dextramers, the T cell responses were determined by flow cytometry to be Ag specific. 3) SERCA2a 971–990-sensitized T cells produce both Th1 and Th17 cytokines. 4) Animals immunized with SERCA2a 971–990 showed Ag-specific Abs with enhanced production of IgG2a and IgG2b isotypes, suggesting that SERCA2a 971–990 can potentially act as a common epitope for both T cells and B cells. 5) Finally, SERCA2a 971–990-sensitized T cells were able to transfer disease to naive recipients. Together, these data indicate that SERCA2a is a critical autoantigen in the mediation of atrial inflammation in mice and that our model may be helpful to study the inflammatory events that underlie the development of conditions such as atrial fibrillation in humans
    corecore