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Abstract 

Tribo-electrification is a common occurrence within the pharmaceutical industry where solid 

dosage forms constitute majority of pharmaceutical formulations. Tribo-electrification of 

powders leads to a range of complications such as adhesion of particulate material to the 

processing equipment resulting in segregation, affecting the content uniformity. Flurbiprofen, 

a highly charging material, was used as a model drug to investigate the tribo-electrification 

and adhesion characteristics by impregnating the model drug inside a mesoporous silica 

matrix.  The model drug was impregnated using i) solvent loading, and ii) physical mixing 

methods, at varying degree of silica to drug ratio (5-20 % w/w). The resulting mixtures were 

tribo-charged using a custom built device based on a shaking concept inside a stainless steel 

capsule, consisting of a Faraday cup and connected to electrometer. The electrostatic charge 

and the percentage adhesion of Flurbiprofen were reduced in both drug loading methods. The 

solvent impregnation method using acetone was more successful at reducing the electrostatic 

charge build up on flurbiprofen than physical powder mixing. The percentage adhesion to the 

shaking capsule was reduced notably as a result of loading the drug in the SBA-15 porous 

network. The results illustrate that the incorporation of highly charged model drug inside a 

low-charging pharmaceutical carrier system to be an effective approach in control the 

induction of tribo-electrification phenomena during powder processing.    
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1- Introduction 

In many industrial applications such as pharmaceutical, detergent, cosmetics and food 

manufacturing, powder handling is a challenging process due to complications arising during 

the manufacturing process. A common obstacle faced in powder handling is the powder tribo-

electrification phenomenon (Watanabe et al., 2007; Kaialy 2016). The phenomenon is 

complex and not well understood due to many factors affecting the charge transfer process. 

Currently, three fundamental mechanisms contributing to charge generation by tribo-

electrification are most commonly reported include material transfer, ion transfer and electron 

transfer.  The most widely accepted theory is electron transfer, working on a principle of 

varying work function (∅) of material, ∅ is the minimum energy required to remove electrons 

in the outer electron shell of an atom. Resulting in the flow of electron from the lower work 

function towards the higher, inducing a potential difference across the particle surface, 

allowing for charge to transfer (Cross, 1987). 

Tribo-electrification occurs when particles come into contact with one another or the walls of 

processing equipment in unit operations such as mixing, conveying, granulating or blending 

when these two dissimilar materials make contact by impaction or shearing and are 

subsequently separated, holding any charge transferred (Matsusaka et al., 2010). Charged 

materials have a tendency to adhere or repel powder particles, resulting in flowability issues 

and potentially may lead to blockages of pipes by particle adhesion to the walls of processing 

equipment (Matsusaka and Masuda, 2003). Within the pharmaceutical industry this can be 

problematic and in extreme cases, tribo-electrification of material may lead to dust explosions 

(Šupuk et al., 2011). These challenges are faced during common powder handling processes 

such as milling, filling and compaction, in addition to a rise is unit operation problems 

leading to segregation of materials, impacting the quality of the end product by jeopardising 
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the content uniformity of the batch (Lakhani and Deshpande, 2013). Investigating alternative 

methods for charge control is therefore crucial.  

SBA-15 is a highly porous material with a rising interest for its application in drug delivery 

(Colilla et al., 2015; Yu and Zhai, 2009). It is comprised of nano-sized cylinder filled with 

regular arranged pores, expected to provide a more versatile drug delivery material (Song et 

al., 2005). In this paper the principle of the highly charging material is embedded within the 

silica pores, to provide a low-charging carrier system. The model drug was impregnated 

using i) solvent loading, and ii) physical mixing methods, at different silica ratios and the 

drug loading ability was compared. The purpose of drug loading would allow for the API to 

be administered in its original form, without the need for lengthy steps to aid in material 

handling properties whilst maintaining physicochemical properties (Ghori, 2014; Ghori et al., 

2015). Currently no work has been reported on the effects of SBA-15 upon the charging 

tendency of a pharmaceutical material, prompting the purpose of this study.  

As many active pharmaceutical ingredients (APIs) have a propensity to become 

electrostatically charged, various techniques are utilised to aid material handling by 

improving the physicochemical properties, however, these can lead to further complications 

(Šupuk et al., 2013) such as extra steps  increasing processing times. For the purpose of this 

study, FBP) was chosen as the model material due to its crystalline nature and poor adhesion 

properties, factors which are characteristic of materials possessing a high propensity for tribo-

charging (Šupuk et al., 2013). Murtomaa et al believe that the amorphicity has a measurable 

effect on the tribo-charging of powders (Murtomaa et al., 2002) A study undertaken by Carter 

et al investigates the tribo-electrification of spray dried and crystalline lactose which 

concluded significant differences in charge values between the two lactose powders under the 

same conditions (Carter et al., 1998). A more recent studies have examined the tribo-
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electrification of amorphous salbutamol sulfate which was more electropositive than jet-

milled crystalline particles (Kwok and Chan, 2008). Such results could have been seen due to 

different surface energies between crystalline and amorphous materials leading to varying 

charge values (Zhang et al., 2006). FBP is well known for its poor compaction, solubility and 

dissolution (Ghori et al., 2014a; Rudrangi et al., 2016) properties due to its propensity to 

adhere to the punch surfaces, FBP has been reported as a highly sticking compound (Paul et 

al., 2017). The adhesion properties may be due to the ability of the powder to withhold high 

levels of electrostatic charge, reducing the propensity for gaining charge may lead to an 

improvement in material handling as well as compaction properties (Šupuk et al., 2013). In 

this study we have incorporated FBP within the extremely porous SBA-15 material, which 

possesses a large surface area, allowing for the pores to be filled with the drug, with an aim 

reduce the charge propensity whilst maintaining therapeutic potency, as well as quantifying 

the percentage adhesion of drug material to the shaker walls. The model would then be used 

to explore other systems to investigate their charging tendency as a result of being loaded 

within the low-charging carrier system.  

 

 

 

 

 

 

 



  

7 

 

 

2- Materials and Methods 

2.1- Materials 

Flurbiprofen was purchased from Aesica Pharmaceutical Ltd. (Cramlington, UK) and 

Mesoporous silica (SBA-15) was obtained from ACS Material (California, USA). The 

solvent used was Acetone, purchased from Fisher Scientific (Loughborough, UK).  

2.2- Methods 

2.2.1- Fractionation of SBA-15 and FBP particle size 

Particle size fractions of SBA-15 (150–250 μm) and Flurbiprofen (38–63 μm) were obtained 

through mechanical sieving. All the powders were stored at ambient temperature (18–24 °C) 

and humidity (RH 36%–44%) before any further investigations. 

2.2.1- Development of SBA-15: FBP powder mixtures 

The binary mixtures of SBA-15 and FBP of varying SBA-15 to FBP ratios (5-20 %w/w) 

were prepared using two loading methods; solvent impregnation and powder impregnation, 

allowing for a comparison of drug distribution throughout the mesoporous silica matrix.  

2.2.1.1- Solvent impregnation method 

SBA-15: FBP mixtures were prepared by dissolving 1.5g of pure drug in 5 ml of acetone. 

After the drug has completely dissolved, the ratio dependant quantity of SBA-15 was added, 

and the solution was stirred for 5 min. The samples were initially dried at room temperature 

for 24 h followed by a further 24 h drying at 40 °C using conventional oven. 
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2.2.1.2- Powder physical mixing 

SBA-15: FBP physical mixtures were prepared by placing 5g of drug and the relevant ratio of 

SBA-15 in a glass container and mixed for 10 minutes at 49 rpm using a Turbula mixer (Glen 

Creston Ltd, UK). The container was left for 2 days for any potential charge to dissipate. 

2.2.2- Physicochemical characterisation of powder mixtures  

2.2.2.1- Differential Scanning Calorimetry (DSC) studies  

Differential Scanning Calorimetry (DSC) was undertaken using Mettler Toledo SC 821, 

Mettler-Toledo Ltd., Leicester, UK. Specimens of 5-10 mg were placed in vented aluminium 

pans under nitrogen purge at 50 ml min
-1

, over a range of 25-300°C at a heating rate of 10°C 

min
-1

. An estimated percent crystallinity of the binary mixtures was assessed using Eq. 1, 

relative to the melting enthalpy of crystalline FBP as a reference.  

                          
                              

                                          
                         Eq. 1 

2.2.2.2- Thermogravimetric analysis (TGA) 

Thermogravimetric analysis (TGA) was performed using a Mettler Toledo TGA, Mettler-

Toledo Ltd., Leicester, UK, samples between 5-10 mg and a temperature range of 25-500°C 

at a heating rate of 5°C min
-1

 were used.  The process was carried out under a nitrogen purge 

at a constant flow rate of 50 ml min
-1

. 

2.2.2.3- Powder X-Ray diffraction (XRD)  
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The Bruker D2 Phaser XRD diffractometer by Bruker, Coverntry, UK was used to obtain 

patterns for the parent drug (FBP) and SBA-15 as well as the powder mixes. The sample 

powders were scanned at a 2 θ (5° -100°) at a scanning rate of 1.5 min
-1

. 

2.2.2.4- Content uniformity analysis 

The concentration of FBP was quantified by UV-Vis spectrophotometry, (Jenway 6305 UV-

Vis Spectrophotometer, λ max = 247 nm) (Verma et al., 2016) where 10 mg of sample was 

randomly obtained from each batch (n=3), dissolved in 100 ml of phosphate buffer at pH 7.2 

for 24 hours (Ghori et al., 2014b). The sample was then filtered using a 0.45ml PTFE syringe 

filter. The acceptance limit was in the 95-105 % range (BP 2012).   

2.2.3.5- Brunauer–Emmett–Teller (BET) analysis 

Pore size and surface area was analysed using the Micromeritics 2020 apparatus. The study 

was carried out at 77 K, prior to analysis the samples were de-gassed in a vacuum oven at 

100°C for 10 hours, using a FlowPrep 060. The surface area of the sample was calculated 

using Brunauer–Emmett–Teller (BET) equation from the adsorption data (Brunauer et al., 

1938). The pore-size distribution results are generated from the adsorption branches of the 

nitrogen isotherms using the BJH model (Barrett et al., 1951). Each sample was analysed in 

duplicate.  

2.2.3- Tribo-electrification studies  

The charge to mass ratio (Q/M) of the materials was obtained using a shaking concept 

originally described by (Šupuk et al., 2009) and adopted in various studies (Asare-Addo et 

al., 2013; Ghori et al., 2014; Ghori 2014; Ghori et al., 2015 ). Briefly, Powder (~0.1 g) was 

placed inside a stainless steel cylindrical container (10 mL) and shaken in a horizontal 
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direction (Retsch MM 400) for 0.5, 2, 5 and 10 min at a vibration frequency of 20 Hz. The 

charged powder particles were then poured into a Faraday cup, connected to an electrometer 

(Keithley Model 6514). A Faraday cup comprises two concentric cups made up of a 

conducting material. The outer cup is slightly larger and acts as an electrical shield and a lid 

covers it. Both are very important to prevent the effect of any extraneous electric fields. The 

inner cup is directly attached to an electrometer for charge measurement and can be removed 

to measure the weight of the sample poured. The two cups are separated by a PTFE insulator. 

As charged samples are loaded into the inner Faraday cup, this induces an equal but opposite 

charge on the wall of inner faraday cup, providing the net charge on the object. The 

resolution of the charge measurement was in nano-Coulombs (nC). The charge to mass ratio 

(Q/M) was calculated by dividing the final charge with the final mass of the respective 

powder. Each tribo-electric charging test was repeated three times and the shaking container 

was cleaned between each test by washing with isopropyl alcohol, rinsing with water and 

drying with compressed air to remove any residual deposits, impurities and surface charges. 

All the powder samples were stored overnight at an ambient temperature (21–23.1 °C) and 

humidity (RH 36%–48%) for dissipation of tribo-charging. Studies were carried out at an 

ambient temperature (18–24 °C) and humidity (RH 36%–44%). Maximum charge was gained 

after 5 min shaking for FBP and SBA-FBP powder mixtures. Maximum charge acquisition 

data (Qmax) are presented as charge to mass ratio (Q/M) at the end of each tribo-electrification 

experiment (n = 3). 

2.2.4- Powder surface adhesion studies 

Powder particle adherence to the surface of the stainless steel container used in the tribo-

electrification studies was calculated from mass difference by deducting the final amount 

recovered (post-shaking and tapping) from the initial amount of sample loaded into the 
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shaking vessel and powder mass loss was demonstrated as a percentage (%) of powder 

adhesion (Ghori 2014; Ghori et al., 2014; Ghori et al., 2015). 

 

3- Results and discussion 

3.1- Thermal Analysis  

Thermal analysis was carried out using DSC and TGA. In the DSC traces obtained for SBA-

15, the melting peak was not observed in the (Figure 1) temperature range tested (25 – 

350°C) due to its high melting point of >1600°C. Table 1 illustrates the melting point and % 

relative crystallinity for all samples for both methods. The melting point corresponding to the 

parent drug is a sharp endothermic melting peak at ~116°C. However, melting endotherms 

for the binary mixtures showed reduced intensity as the percentage of SBA increased for both 

loading methods, this may be due to the crystalline material   entering the pore matrix of the 

SBA-15, so a reduced amount of material is available, also   SBA-15 did not present a 

melting enthalpy within the chosen temperature range, resulting in a reduction in intensity of 

the melting endotherm formed by the binary powder mixtures. From the DSC (Figure 1 and 

Table 1), data it is evident that the introduction of SBA-15 has no chemical influence upon 

FBP as such changes would influence the tribo-electrification results, strongly indicating that 

the suppression of charge propensity is due to the drug loading within the pore network of the 

mesoporous silica. The enthalpy of FBP was 116.5 J/g
-1

 in contrast to 20% SBA by physical 

mixing at 71.5 J/g
-1

, signifying a decrease in crystallinity as a result of loading the FBP 

within the pores of the SBA-15. The results show approximately 40-50% reduction in 

crystallinity at the highest silica loading concentration in contrast to the pure drug material, 
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with solvent impregnation showing a greater reduction in crystallinity for all SBA-15: FBP 

mixtures.  

Thermogravimetric analysis was undertaken in order to determine successful uptake of FBP 

onto SBA-15 and results are depicted in Figure 2. The total weight loss of 97.5% was 

observed for FBP (Figure 2) at 270°C. The drug loading fraction can be estimated from the 

ratio of the weight loss occurring between 100 and 500°C from the initial weight, considering 

the limitation of distinguishing any drug sample on the surface of SBA-15 from drug material 

loaded within the pores. For samples prepared by both methods, the weight loss remained 

constant initially and the loss initiated at approximately 175-200°C, beyond this point the 

mass decreased rather significantly; reaching a state of maximum degradation, in the case of 

FBP the weight loss was ~97% in comparison the drug loaded within SBA-15, as little as 5% 

of the silica showed a ~65% reduction in weight for solvent impregnation and ~55% for the 

physical mixture, indicating successful drug loading of the drug material within the pores 

rather than coating the surface of the mesoporous silica . As the SBA percentage increase the 

percentage weight loss decreased, where 20% SBA-15 showed a reduction by ~65% in 

comparison to FBP at 97% (Figure 2). Both loading methods presented a similar pattern to 

the pure FBP. TGA analysis showed no weight loss that would be indicative of 

hydrate/solvate formation, which may have occurred during the solvent impregnation 

method, the formation of a hydrate/solvate may influence tribo-electrification of a material.  

3.2- Powder X-ray diffraction 

XRD was used to confirm sample crystallinity for the FBP, SBA-15, and the binary mixtures 

of FBP and SBA-15 prepared by solvent impregnation as well as physical impregnation. The 

crystallinity is an important factor having a substantial role when considering the properties 

of a material, including tribo-electrification. The samples were analysed and differences in 
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the x-ray diffraction patterns between 5° and 100° at angle 2θ between the parent drug and 

their binary mixtures were compared.  As shown in Figure 3, it is evident that mesoporous 

silica (SBA-15) is an amorphous material. There are some variances in the peak angle 

between the binary mixtures of FBP and SBA-15 prepared by solvent impregnation; in 

comparison to pure FBP drug which possesses characteristic peaks at, 7°, 11°, 16°, and 21°. 

The XRD pattern of binary mixtures prepared by physical impregnation demonstrates a slight 

decrease in peak size, in contrast with the pure drug. The most substantial difference being 

observed in 20% SBA-F.   

3.3- Content uniformity analysis 

Content uniformity of all the powder mixtures were quantified using UV-VIS spectroscopy. 

The percentage of drug loading was determined by dissolving the SBA-15: FBP powder 

mixture. The dissolved FBP was quantified by adopting the linear regression equation of the 

standard calibration curve of FBP.  The linearity coefficient (R
2
) was 0.994 and the findings 

showed all the binary powder mixtures contained 95-105% of FBP theoretical content, hence 

satisfying the criteria of British Pharmacopeia (BP 2012). 

3.4- Pore size distribution and specific surface area measurement 

The surface area and pore size distribution of SBA-15 and subsequent binary mixtures were 

determined by nitrogen adsorption at 77K and resulted are summarised in Table 2. The 

specific surface area of pure SBA-15 sample was found to be 744.6 m
2
/g

-1
 and significantly 

decreased to 6.4 m
2
/g

-1
 and 11.9 m

2
/g

-1
 in the case of the binary mixtures with FBP and SBA-

15 prepared by solvent impregnation and physical impregnation respectively, at 5% SBA-15: 

FBP concentration. The data for 10% SBA-15 concentration showed a slight increase for both 

physical impregnation and solvent impregnation at 30.2 m
2
/g

-1
 and 13.7 m

2
/g

-1 
respectively in 
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comparison to 5%. Results obtained for 15% SBA-15 display a specific surface area of 45.6 

m
2
/g

-1
 for physical impregnation and 25.9 m

2
/g

-1 
for solvent impregnation. In comparison to 

20% mesoporous silica which showed 58.2 m
2
/g

-1 
and 23.4 m

2
/g

-1 
for physical impregnation 

and solvent impregnation respectively. This data represents successful loading of FBP within 

the pores of the SBA-15, however, the degree of drug loading within the SBA-15 pore 

network was greater for the solvent impregnation technique in comparison to the physical 

impregnation method. Confirmation of successful drug loading is imperative as it indicated 

that drug loading technique does play a role, in the degree of drug uptake as well as tribo-

charging of the material. The greater the drug loading within the pores results in a reduced 

amount of drug material available to charge. The pore volume data was obtained using 

Barrett-Joyner-Halenda (BJH) analysis. The method utilises a modified kelvin equation 

which accounts for the quantity of adsorbate removed from the pores as there is a decrease in 

relative pressure from high to low. This in turn relates to the volume of pore data obtained.  

The mesoporous silica (SBA-15) had a mesoporous volume of 0.79 cm
3
 g

-1
 whilst the pore 

volume of binary mixtures was found to be 0.1 cm
3
 g

-1 
and below depending on the SBA -15 

concentration, as well as the loading technique utilised indicating the successful inclusion of 

FBP within the highly porous silica. The solvent impregnation technique results in binary 

mixtures with a smaller surface area as well as pore volume when compared to the physical 

impregnation method.  

3.5- Tribo-electrification and powder surface adhesion studies  

The charge of the samples was measured at time intervals of 0.5, 2, 5 and 10 minutes with an 

initial charge recorded at time point zero which represents the charge on the sample prior 

being subjected to tribo-electrification. The data presented represent an average of three 

independent measurements obtained. The adhesion value refers to the mass loss of powder 
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which strongly adhered to the shaking container (Figures S1-S2). The electrostatic charge 

level of the model drug increased with shaking time where a maximum electronegative 

charge of -226 nC g
−1

 (Figure 4) reached after 5 minutes of shaking. This indicates the 

movement of electrons from walls of the shaker to the drug particles which might be due to 

the higher work function of the FBP, resulting in a gain of electrons.  

The triboelectric charge of SBA-15 was also measured and obtained at the time intervals 

mentioned above. SBA-15 has an extremely low charging tendency as a small charge to mass 

ratio was produced.  The sample charged negatively against the stainless steel shaker at each 

time interval, with a reduction in charge level with shaking time towards electropositive until 

a charge level of -1.2 nC g
−1 

was reached after 10 mins (Figure 4).  

The SBA-15 produced a negative charge due to the transfer of electrons from the wall of the 

shaker to the powder particles as a result of the walls of the capsule possessing a lower work 

function. When comparing the adhesion data of the SBA-15 (Figure S1) to the model drug 

(Figure S2) it is evident that there is a vast reduction in tendency of the powder to adhere to 

the walls, FBP shows approximately 45% adhesion when induced to the shaking motion for 5 

minutes in comparison to SBA-15 which had a maximum adhesion of approximately 18% 

after 10 minutes. The adhesion of the material to the shaker walls occurs due to the formation 

of an electric field, affecting the potential difference and resulting in greater adhesion. All 

mixtures were subjected to tribo-charging for 5 minutes, the charge results of the binary 

mixture produced by solvent impregnation method show that the highest charging sample 

was 5% SBA-F (Figure 5), the charging ranged from approximately -2.0 to -10 nC/g in 

comparison to FBP (-226 nC/g), Figure 4. It is evident from the data produced that the 

charging and adhesion is vastly affected by the ratio of the two samples in the mix. As the 

ratio of SBA-15 increased from 5% to 20% the charge level reduced, also from the adhesion 
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data (Figure 6) it is apparent that the sticking propensity has reduced to below 14% for all 

ratios chosen for solvent impregnation in comparison to FBP at approximately 45%. There is 

an obvious reduction when as little as 5% of SBA is used. This reduction in charge and 

adhesion could be due to the change in particle-particle interactions between the FBP 

particles, due to the drug incorporating within the pores of the SBA-15, which acts as a low-

charging carrier system, as drug only results in FBP particles induced to lateral motion upon 

other drug particles. As the concentration of SBA-15 has increased the probability of drug 

entering the pores increases, reducing the quantity of the highly charging and sticking drug 

available to be induced to tribo-electrification with the shaking container walls, the remainder 

drug material is induced to drug-SBA-15 interactions reducing the probability of drug-drug 

interactions. All samples charged negatively against the stainless steel container due to 

having a higher work function than the capsule and accepting the charge transfer in 

accordance to the electron transfer theory. The charge and percentage adhesion data obtained 

for the physical impregnation sample was also investigated at a time interval of 5 minutes. 

From Figure 5 it is apparent that the charge of the powder mix decreased however not as 

significantly as when preparing by solvent impregnation. This may be due to a reduced 

chance of FBP loading within the pores as any agglomerates would be too large to enter the 

pores, which is evident from the BET data showing a larger surface area available after drug 

loading had occurred in comparison to the solvent impregnation method. The charging 

decreased as the percentage of SBA-15 increased form 5% to 20%. Like the solvent 

impregnation method, the physical impregnation did  reduce the percentage adhesion (Figure 

6) of particles to the capsule walls and charging propensity of material, this was apparent 

when as little as 5% SBA-15 was used, resulting in better material handling properties. 
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4- Conclusions  

The study confirms that the drug loading method and quantity of SBA-15 as the non-charging 

carrier system proposed in this work have an effect on the tribo-charging propensity and 

adhesion behaviour of FBP. It is commonly known that FBP has a tendency to charge 

significantly, hence used as a model drug within this study. FBP produced a saturated charge 

level of -226.4 nC/g and surface adhesion of 45%. With potential complications arising 

during powder handling, such as flowability of the material and poorer content uniformity. 

Changes to the particle to particle as well as particle to wall interactions have shown to 

modify the electrostatic properties of FBP due to its inclusion within the non-charging carrier 

SBA-15 system, which was demonstrated by the results as the SBA-15 concentration 

increased, the charging tendency and adhesion tendency of the material reduced drastically in 

comparison to FBP on its own. The drug loading method utilised did not vastly affect the 

results, as both loading techniques reduced the net charge and percentage adhesion 

significantly in comparison to the parent drug. The solvent impregnation method saw a 

greater reduction in charge when compared to physical impregnation, this is potentially due 

to a greater quantity of FBP entering the pores in comparison to physical impregnation 

whereby any agglomerates are too large to enter, would stick to the surface of the SBA-15 

particles and play a role in increasing the probability of drug to drug interactions 
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Figure 1, DSC profiles of pure SBA-15, FBP and their respective powder mixture 

prepared by (a) physical mixing and (b) solvent impregnation.  
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Figure 2, TGA profiles of pure SBA-15, FBP and their respective powder mixture 

prepared by (a) physical mixing and (b) solvent impregnation.  
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Figure 3, XRD profiles of pure SBA-15, FBP and their respective powder mixture 

prepared by (a) physical mixing and (b) solvent impregnation. 
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Figure 4, Tribo-electric charging profiles of pure SBA-15 and FBP with respect to 

shaking time 
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Figure 5, Charge to mass ratio as a function of shaking time inside a stainless steel 

container at 20 Hz and a temperature of 22 °C with the relative humidity at 37.5% for 

SBA-FBP mixture produced by physical mixing and  solvent impregnation. 
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Figure 6, The particle adhesion to stainless steel container walls after shaking at 20 Hz 

at 22.4°C and relative humidity 37.5% of the binary mixtures of FBP and SBA-15 that 

were prepared by physical mixing and solvent impregnation. 
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Sample Melting peak (°C) Melting enthalpy (Jg
-1

) Relative 

crystallinity 

(%) 

Flurbiprofen 116.6 -116.5 100 

5% SBA (PM)  116.67 -107.9 92.61 

10% SBA (PM) 116.44 -102.22 87.74 

15% SBA (PM) 116.79 -84.74 72.73 

20% SBA (PM) 116.42 -71.48 61.35 

5% SBA (SI) 119.21 -101.58 87.19 

10% SBA (SI) 117.15 -89.75 77.03 

15% SBA (SI) 117.54 -67.86 58.24 

20% SBA (SI) 118.16 -61.23 52.55 

Table1, Summary of DSC melting parameters and relative crystallinity (%) of FBP a nd 

its powder mixtures 

 

 

 

 

 

SI = solvent impregnation, PM = Powder mixtures    
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 Pure 

Compounds 

Physical 

Mixing 

Solvent 

Impregnation 

       

 SBA FBP 5%         

SBA-F 10%           
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SBA-F 15%           

SBA-F 20%           

SBA-F 5%           

SBA-F 10%           

SBA-F 15%           

SBA-F 20%           

SBA-F           

BET Surface 

Area/ m
2
 g

-1 

          

 744.6 - 11.9 30.3 45.6 58.2 6.4 13.7 25.9 23.4 

BJH 

Adsorption 

cumulative 

surface 

area of 

pores 

between 

17.000 Å 

to 

3000.000 

Å /  m
2
 g

-

1
1 

520.9 - 11.3 34.7 53.3 68.8 5.9 14.4 28.7 26.7 

BJH 

Desorption 

cumulative 

          

surface 

area of 

pore  

between 

          

17.000 Å 

to  

3000.000 

Å /  m
2
 g

-1
 

595.5 - 14.5 40.1 3.1 77.5 7.2 16.8 33.5 30.4 
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BJH 

Adsorption 

cumulative 

pore 

volume 

between 

17.000 Å 

to 

3000.000 

Å / cm
3
 g-

1 

0.79 - 0.02 0.05 0.08 0.10 0.02 0.03 0.05 0.05 

BJH 

Desorption 

cumulative 

pore 

volume 

between 

17.000 Å 

to 

3000.000 

Å / cm3 g
 

0.82 - 0.4 0.5 0.5 0.5 0.5 0.3 0.3 0.2 

Adsorption 

average 

pore width 

(4V/A by 

BET) / Å 

44.1 - 61.8 62.7 64.5 64.3 57.0 62.4 62.6 67.5 

BJH 

Adsorption 

average 

pore width 

(4V/A) / Å 

60.5 - 71.2 62.1 61.9 59.9 80.7 72.8 66.5 70.7 
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BJH 

Desorption 

average 

pore width 

(4V/A) / Å 

55.1 - 55.5 53.6 53.9 53.3 65.7 62.1 59.1 62.0 

Table 2, Average pore diameter, specific surface area, and pore volume (pore sizes 

from17.000 Å to 3000.000 Å) for SBA-15 and the binary mixtures of FBP and SBA-15 

prepared by solvent impregnation and physical mixing. 

 




