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Abstract
Sulphur (S) is considered to improve the nutrient uptake of plants due to its synergistic relationship with other nutrients. This
could ultimately enhance the seed yield of oilseed crops. However, there is limited quantitative information on nutrient uptake,
distribution, and its associated impacts on seed yield of sesame under the S application. Thus, a two-year field study (2018 and
2019) was conducted to assess the impacts of different S treatments (S0 = Control, S20 = 20, S40 = 40, and S60 = 60 kg ha−1) on
total dry matter production, nitrogen, phosphorus, potassium, S uptake and distribution at the mid-bloom stage and physiological
maturity. Furthermore, treatment impacts were studied on the number of capsules per plant, number of seeds per capsule,
thousand seed weight, and seed yield at physiological maturity in sesame. Compared to S0, over the years, treatment S40
significantly increased the total uptake of nitrogen, phosphorus, potassium, and S (by 13, 22, 11% and 16%, respectively) at
physiological maturity, while their distribution by 13, 36, 14, and 24% (in leaves), 12, 15, 11, and 15% (in stems), 15, 42, 18, and
10% (in capsules), and 14, 22, 9, and 15% (in seeds), respectively. Enhanced nutrient uptake and distribution in treatment S40
improved the total biomass accumulation (by 28%) and distribution in leaves (by 34%), stems (by 27%), capsules (by 26%), and
seeds (by 28%), at physiological maturity, as compared to S0. Treatment S40 increased the number of capsules per plant (by 13%),
number of seeds per capsule (by 11%), and thousand seed weight (by 6%), compared to S0. Furthermore, over the years, relative
to control, sesame under S40 had a higher seed yield by 28% and enhanced the net economic returns by 44%. Thus, our results
suggest that optimum S level at the time of sowing improves the nutrient uptake and distribution during the plant lifecycle, which
ultimately enhances total dry matter accumulation, seed yield, and net productivity of sesame.
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Introduction

Oilseeds are important crops that play a prominent role in the
agriculture industry all over the globe. The oil obtained

through these oilseed crops is the major constituent of the
human diet and an important source of healthy fatty acids to
meet human dietary needs (Zargar et al. 2016; Abiodun 2017).
However, the rapidly increasing population of the world,
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clearly indicates that demand for high-quality oilseeds con-
tinues to grow (Islam et al. 2016). Likewise, over the past
three decades, increased interest in oilseeds led to an 82%
expansion in the total cultivated area (Rahman and
Dejiménez 2016). Consequently, this continuous intensifica-
tion and extension in cropping areas are exerting pressure on
agricultural land and resulting in overexploitation of the nat-
ural resources, which is a major concern in agricultural sus-
tainability (FAO 2017). Thus, to satisfy the growing demands
of edible oils, oilseeds production needs to be coupled with
efficient agronomic practices to increase the per unit area yield
on a sustainable basis.

Sulphur (S) is considered a key element in plant nutrition
and oilseed crops may not reach their full potential when it
becomes a limiting factor. Because it affects the developmen-
tal processes (such as capsule initiation) in plants (Girondé
et al. 2014). Hence, high seed yield and quality of oilseeds
are possible when they have access to the optimum amount of
S (Scherer 2001). It also increases the uptake of major plant
nutrients, namely, nitrogen (N), phosphorus (P), and potassi-
um (K), while reducing the uptake of toxic elements such as
chlorine and sodium (Zhang et al. 1999; Salvagiotti et al.
2009). Furthermore, studies have documented that S applica-
tion improves sesame seed yield, oil, and protein contents
(Raza et al. 2018a, 2018b). However, these investigations
have not quantified the effects of S application on the nutrient
uptake and distribution in sesame crop. Therefore, S fertiliza-
tion can show promising results in improving the nutrient
uptake, biomass accumulation, and seed yield of sesame.

N, P, K, and S are the key macronutrients that drive the
growth and developmental processes of crops (Scherer 2001;
Raza et al. 2019). Adequate availability and uptake of these
essential nutrients influence the synthesis and distribution of
carbohydrates in plants (Arduini et al. 2006). The optimum
quantity of N in crops increases the leaves development and
photosynthetic capacity (Muchow and Davis 1988), and also
improves the biomass accumulation and distribution towards
the reproductive organs of the crop plants (Vouillot and
Devienne-Barret 1999; Prystupa et al. 2004). P influences
the dry matter accumulation and distribution in vegetative as
well as reproductive parts in a different way than N (Batten
1992; Prystupa et al. 2004) and affects the seed yield and yield
components of crops (Elliott et al. 1997). Similarly, optimum
uptake of K is essential for improving crop production, Iqbal
and Hidayat (2016) revealed that adequate K significantly
enhances crop growth, dry matter accumulation, and
partitioning in economic plant parts such as seeds.
Moreover, nutrient uptake depends on the crop type, cultivar,
and microenvironment but it is more influenced by the grow-
ing conditions (such as nutrient availability) in field rather
than any other factor (Raza et al. 2019). Hence, understanding
the nutrient uptake of the crop is critical for sustainable

agricultural production. However, past investigations
neglected the role and importance of nutrient uptake and dis-
tribution in sesame productivity. Besides, studies have not
focused on the effects of S application on nutrient accumula-
tion and distribution of sesame.

The S deficiency in oilseeds adversely impacts the seed
yield and quality because it reduces the carbohydrates trans-
location to the reproductive parts and utilization for oil syn-
thesis (Rani et al. 2009; Sahoo et al. 2018). In recent decades,
reports on S deficiency have increased due to reduction in soil
fertility status and organic matter content as a result of inten-
sive agriculture and low S containing fertilizers as a result of
strict sulphur dioxide emissions control (Eriksen 2009;
Steinke et al. 2015; Carciochi et al. 2016). However, S appli-
cation has been reported to enhance nutrient uptake and seed
yield. Previously, it has been confirmed that S application
contributes towards better nutrients uptake and carbohydrate
synthesis in the crop plants due to synergistic effects with
other nutrients such as N, P, and K (Haneklaus et al. 2007;
Carciochi et al. 2020). Furthermore, past improvements in
crop yields were associated with enhanced nutrients accumu-
lation and distribution because these nutrients are essential
seed components (Sinclair et al. 2019), whereas, the effects
of S application onN, P, K, and S uptake and distributionwere
not studied before in sesame. Hence, adequate S availability is
a key factor in sesame production and there is insufficient
knowledge about the potential benefits of S application on
nutrient uptake and distribution in sesame plants.

Therefore, in this study, we investigated the effects of S
application on major plant nutrients uptake (at the mid-bloom
and physiological maturity stages) and seed yield (at physio-
logical maturity) of sesame under the rainfed conditions. The
key objectives of this field study were to (1) assess the impact
of S application on dry matter production, N, P, K, and S
uptake, and their distribution in sesame plants (at the mid-
bloom and physiological maturity); (2) study the influence
of S application on yield components and seed yield of sesame
(at physiological maturity), and (3) evaluate the effects of S
application on economic returns of sesame.

Material and methods

Site description

This field experiment was conducted during the growing sea-
sons of 2018 and 2019 at the research farm (33°11′62″ N,
73°00′99″ E, 520 m elevation) of PMAS-Arid Agriculture
University Rawalpindi in Punjab Province, Pakistan (Fig. 1).
The climate of the research site falls under the dry sub-humid
region with monsoon-influenced high summer rainfall (main-
ly in July and August). Monthly rainfall, average maximum,
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and minimum temperature during growing seasons in 2018
and 2019 are given in Fig. 2. For soil testing and analysis,
procedures of ICARDA Manual “Soil Plant and Water
Analysis” were followed (Estefan et al. 2013), i.e., pH meter
for soil pH, EC meter for soil electrical conductivity, Kjeldahl
Method for soil available N, Olsen’s method for soil available
P, Flame Atomic Absorption Spectrophotometry Method for
soil available K, Turbidimetric method for soil available S,
Walkley-Black method for soil organic matter, saturation
paste percentage method for soil saturation, and excavation
method of distributed soil samples for soil bulk density.
According to the soil tests at the time of sowing, the top soil
layer of 20 cm had loam texture with pH (7.2), electrical
conductivity (1.02 dSm−1), available N (0.28 g kg−1), avail-
able P (2.5 g kg−1), available K (95 g kg−1), available S (4.3 g
kg−1), organic matter (0.57%), saturation (34%), and bulk
density (1.23 g cm−3).

Experimental design and details

The experiment was executed in RCBD-factorial design with
three replicates. This field study had two sesame cultivars
(TS-5 and TS-3) and four S levels (S0 = Control, S20 = 20,

S40 = 40, and S60 = 60 kg ha−1) as treatments. Seed of sesame
cultivars was collected from Ayub Agriculture Research
Institute (AARI), Faisalabad. Both cultivars, namely, TS-5
and TS-3 were high yielding and branched with the genetic
potential of 2346 kg ha−1 and 2214 kg ha−1 (AARI). While S
was applied as a basal dose at the time of sowing and ammo-
nium sulphate was used as a source of S. The size of each plot
was 5 mwide and 6m long (30 m2), and the total area was 720
m2 (30 m2 × 24 plots). Sesame was sown during the first week
of July in 2018 and 2019 while harvested during the second
week of November in 2018 and 2019. The sesame seeds were
sown manually with a hand-operated seed drill at the seeding
depth of 2 cm. The distance between the plants and rows was
maintained at 10 and 45 cm, respectively, which resulted in a
plant population of 200,000 plants ha−1. The fertilizers were
applied as basal dose at the time of sowing, at the rate of N
50 kg ha−1, P 60 kg ha−1, K was not applied because the soil at
the study site had adequate K-content and S was applied as per
treatment. Urea and diammonium phosphate were used as
sources of N and P. No supplemental irrigation was given
during the growing period of the crop and it was completely
dependent on rainfall. All other recommended practices were
kept uniform in all experimental units.

Study site

Fig. 1 Location of the study site
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Measurements

For sampling, measurements, and analysis of dry matter pro-
duction and distribution, nutrient uptake and distribution, and
seed yield, two sesame growth stages (mid bloom (MB) (65
days after sowing) and physiological maturity (PM) (125 days
after sowing)) were selected following the previously pub-
lished phenological scale (Langham 2007).

Dry matter production and distribution

For dry matter production (kg ha−1) and distribution in leaves,
stem, capsule, and seeds (g m−2) analysis, fifteen consecutive
plants of sesame, from central rows of each plot were manu-
ally harvested with sickles at MB and PM stages. Then, all the
collected plant samples were separated into leaves, stem, and
capsules (at MB), and leaves, stem, capsules, and seed (at
PM). At each stage, all the plant organ samples were oven-
dried at 70°C to attain a constant dry weight and then the dry
matter for each plant organ was presented as grams per meter
square. The total dry matter (TDM) production was calculated
as the product of dry matter per meter square and the number
of meter squares per hectare.

Nutrient uptake and distribution

At MB and PM, after the determination of the dry matter
production, the same samples (leaves, stem, capsules, and
seeds) were utilized for the measurement of N, P, K, and S
contents in the plant organs. For the preparation of samples to
determine the nutrient contents, each plant organ sample was
ground by using aWileyMill, passed through a 0.5 mm sieve,
and then sample digestion was carried out using Nitric acid
(HNO3) and hydrogen peroxide (H2O2). Then N-content (g
plant−1) of each organ sample was measured using the
Kjeldahl procedure (Li et al. 2001), P-content (g plant−1) of
e a ch o rgan s amp l e was de t e rm ined u s i ng t h e
Vanadomolybdate method (Xia et al. 2013), K-content (g
plant−1) of each organ sample was estimated using the
Flame Atomic Absorption Spectrophotometry Method and
S-content (g plant−1) of each organ sample was measured
using the Turbidimetric method (Verma et al. 1977). The N,
P, K, and S accumulation was determined as the product of
dry matter in each plant organ and N, P, K, and S concentra-
tion in each plant organ, and presented as kilograms per hect-
are. The total N, P, K, and S uptake was calculated by the
summation of N, P, K, and S contents in all the plant organs.

Seed yield

For seed yield and yield components, twenty sesame plants
from central rows of each plot were manually harvested using
shears, at physiological maturity. Harvested samples were
then sun-dried in the form of bundles for one week by keeping
the plants in a vertical direction. After drying, plants were
threshed manually to determine the seed yield (kg ha−1) and
yield components including the number of capsules (plant−1),
number of seeds (capsule−1), and thousand seed weight (g).

Economic analysis

The economic analysis, using partial budgeting was per-
formed to determine the economic viability of S application
for sesame production. The total cost of production included
all the expenses from sowing to harvesting of the crop were
estimated depending on the local rates, while the gross income
was estimated based on the local market prices of sesame, and
net income was calculated from the subtraction of total cost
from the obtained gross income (Raza et al. 2018b).

Statistical analysis

Statistical analysis of the data was performed using Statistix
8.1 software. Significant differences among the studied culti-
vars and S levels were computed through the Analysis of
Variance (ANOVA) technique in combination with the
Least Significant Difference (LSD) test. The significance of
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Fig. 2 Mean maximum and minimum temperature, and rainfall during
the growing season of sesame in 2018 and 2019
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the computed differences between means was evaluated at a
5% probability level (p < 0.05). Graphical representation of
the data was made using the Microsoft Excel program.

Results

Dry matter production and distribution

The dry matter production and distribution within sesame
plants under different S treatments at MB and PM are shown
in Table 1. Across the different S treatments and sampling
stages, on average over the years, sesame plants produced
dry matter of 4357.8 kg ha−1 and 6440.1 kg ha−1 in S0,
4613.0 kg ha−1 and 7011.1 kg ha−1 in S20, 5654.1 kg ha−1

and 8239.8 kg ha−1 in S40, and 4887.8 kg ha−1 and
7660.8 kg ha−1 in S60, at MB and PM, respectively.
Different S levels not only influenced the dry matter produc-
tion but also altered the distribution patterns in the plant part of
the sesame (Table 1). For example, across the years, compared
to S0, treatment S40 improved the biomass in leaves, stem, and
capsules by 27, 29, and 35%, respectively, at MB. Moreover,
optimum S level in S40 significantly increased the dry matter
by 28%, and dry matter contents in leaves by 34%, stem by
27%, capsules by 26%, and seeds by 28% at PM in compar-
ison with S0, indicating that S application significantly en-
hanced the source size which improved the biomass accumu-
lation and distribution in economic parts (capsules and seeds).

N-uptake

Table 2 shows the total N-uptake and N-contents in different
plant organs of sesame in different S treatments. On average,
the highest nitrogen uptake (58.4 and 94.4 kg ha−1, at MB and
PM, respectively) was observed in S40 while the lowest N-
uptake (51.2 and 83.6 kg ha−1, at MB and PM, respectively)
was found in S0. We also measured the nitrogen contents in
leaves, stems, capsules, and seeds of sesame understudied S
treatments. Our results suggested that the N-contents of sesa-
me leaves, stem, capsules, and seeds were highest at MB and
PM in S40 among all the treatments. On average, at MB, the
maximum N-content in leaves, stems, and capsules (28.2,
14.0, and 16.4 kg ha−1, respectively) were obtained in S40
whereas the minimum N-content in leaves, stems, and cap-
sules (24.7, 12.2, and 14.3 kg ha−1, respectively) were noted in
S0. Similarly, at PM, the average highest N-content in leaves
(11.8 kg ha−1), stem (33.3 kg ha−1), capsules (6.6 kg ha−1),
and seeds (42.8 kg ha−1) were observed in S40 while the lowest
N-content in leaves (10.4 kg ha−1), stem (29.8 kg ha−1), cap-
sules (5.8 kg ha−1), and seeds (37.7 kg ha−1) were obtained in
S0. Moreover, N and S dynamics during this study suggested
that their uptake in sesame was closely related to the amount

of S applied, and the maximum uptake was recorded for S40
treatment (Fig. 3).

P-uptake

Table 3 presents the total P-uptake and P-contents under the
studied S treatments. At MB and PM, the average highest P-
uptake of 12.1 kg ha−1 and 24.3 kg ha−1 were measured in S40,
whereas the average lowest P-uptake of 9.7 kg ha−1 and
19.9 kg ha−1 were obtained in S0 treatment. Overall, S40 treat-
ment increased the P-uptake (by 24%) at MB and (by 22%) at
PM, over the years, as compared to S0. In this experiment,
different S treatments also influenced the P-contents in differ-
ent plant organs of sesame atMB and PM. On average, atMB,
the average maximum P-contents of leaves (4.6 kg ha−1), stem
(6.2 kg ha−1), and capsules (1.4 kg ha−1) were measured in
S40. Similarly, at PM, the average maximum P-contents in
leaves (2.9 kg ha−1), stem (7.6 kg ha−1), capsules (1.7 kg
ha−1), and seeds (12.2 kg ha−1) were also found in S40.
However, the average minimum P-contents in all plant organs,
at MB and PM, were observed in treatment S0. Overall,
treatment S40 enhanced the P-content in leaves (by
32%), stem (by 17%), capsules (by 46%), and seeds
(by 22%), as compared to S0 treatment.

K-uptake

Table 4 shows the total K-uptake and K-contents in various
plant parts of sesame under different S treatments. Different S
treatments significantly affected the K-uptake, and K-contents
of sesame. The highest K-uptake at both MB and PM was
obtained in treatment S40 while the lowest in K-uptake in
treatment S0. On average, across the years, S40 improved the
K-uptake (by 13% atMB and 11% at PM) compared to S0, (by
6% atMB and 4% at PM) compared to S20, and (by 3% atMB
and 2% at PM) compared to S60. S treatments also influenced
the K-contents at the plant organ level in sesame at both
stages, while S40 showed the highest K-contents in different
plant organs of sesame. Averaged across the years, S40 in-
creased the K-contents in leaves, stem, capsules, and seeds
by (11% at MB and 14% at PM), (12% at MB and 11% at
PM), (21% at MB and 18% at PM), and (9% at PM),
respectively.

S-uptake

Table 5 presents the total S-uptake and S-content under dif-
ferent S treatments. Total S-uptake was significantly influ-
enced by the different S treatments. Overall, across all the
treatments, treatment S40 showed the average highest S-
uptake (32.7 kg ha−1 at MB and 45.6 kg ha−1 at PM) at both
sampling intervals and years. On average, treatments S40 in-
creased the total S-uptake by 21% at MB and 16% at PM,
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compared to control. Different S treatments had also affected
the S-content in different plant parts of sesame. However,
treatment S40 showed the highest S-content in leaves, stem,
capsules, and seeds at both MB and PM stages under-studied
treatments. Overall, compared to control, treatment S40 in-
creased the S-content in leaves (by 26%), stem (by 15%),
and capsules (by 20%) at MB, while in leaves (by 24%), stem
(by 15%), capsules (by 10%), and seeds (by 14%) at PM.

Seed yield and yield components

Figure 4 presents the influence of different S treatments on
seed yield and yield components of sesame. The sesame
yield components including the number of capsules
(plant−1), number of seeds (capsule−1), and thousand seed
weight are given in Fig. 4. During both years of this
study, S treatments exhibited a significant influence on
yield components of sesame plants. The average highest
number of capsules plant−1 (29.5), number of seeds cap-
sule−1 (70.9), and thousand seed weight (3.58 g) were
noted in S40 treatment, whereas the average lowest num-
ber of capsules plant−1 (26.2), number of seeds capsule−1

(63.9), and thousand seed weight (3.37 g) were recorded
in S0. On average, across the years, compared to S0, treat-
ment S40 increased the number of capsules plant−1 (by
13%), the number of seeds capsule−1 (by 11%), and thou-
sand seed weight (by 6%). Moreover, the seed yield of
sesame was also significantly influenced by different S
treatments (Fig. 4). The highest seed yield (1396.1 kg
ha−1 in 2018, and 1425.7 kg ha−1 in 2019) was recorded
in S40, while the lowest (1086.3 kg ha−1 in 2018, and
1135.8 kg ha−1 in 2019) seed yield was recorded in S0
treatment. Overall, across the years, relative to S0, treat-
ment S40 enhanced the sesame seed yield by 28%,

however, relative to S40, excessive S application in S60
decreased the sesame yield by 8%.

Economic analysis

The economic analysis under different S treatments for
sesame production is given in Table 6. In this study, the
average maximum total income of sesame was observed
in treatment S40, and the average minimum total income
of sesame was recorded in S0. On average, over the
years, compared to S0, the net income was increased
by 21% under S20 treatment, 44% in S40 treatment,
and 29% in S60 treatment.

Discussion

The improvements in resource utilization efficiency of plants
require a multifaceted approach and could enhance the dry
matter and nutrient accumulation as well as translocation to-
wards the economic plant parts. This experiment showed that
different S levels at the mid-bloom and physiological maturity
had significant impacts on dry matter production and
partitioning, nutrient uptake and partitioning, and seed yield
of sesame. Overall, optimum S availability at 40 kg ha−1 for
sesame in S40, as compared with S0, increased the total dry
matter (+29%), seed yield (+28%), and enhanced the N-
uptake (+13%), P-uptake (+22%), K-uptake (+11%) and S-
uptake (+16%) in sesame. This study demonstrated that an
optimum dose of S allowed better S availability to sesame
plants which improved the nutrients uptake, total dry matter
production, and ultimately enhanced the seed yield of sesame.

Dry matter production and distribution in plant parts of
sesame were enhanced under various S treatments (S0, S20,
S40, and S60), consistently with previously reported trends in

y = 1.5793x + 22.937
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Fig. 3 Total Nitrogen and
Sulphur uptake (kg ha−1) in
sesame
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sesame (Raza et al. 2018b; Couch et al. 2017). It was con-
firmed in previous studies that low S availability significantly
abate the biomass accumulation in sesame plants (Shah et al.
2013; Raza et al. 2018b). However, our study showed that the
S application to the sesame plants at the rate of 40 kg ha−1

greatly enhanced the biomass production and distribution as
compared to other treatments. This increase might be

associated with optimum S availability to sesame plants
(Raza et al. 2018b), which increases the photosynthesis ability
of sesame due to the enhanced chlorophyll biosynthesis and
Rubisco activity (Resurreccion et al. 2001; Singh et al. 2018),
and improves the nutrient uptake due to increased water flow
from the rhizosphere, (Muchow and Davis 1988; Elliott et al.
1997). Moreover, the biomass partitioning also followed the
previously reported trend, where the vegetative parts had the
maximum proportion of biomass at the start of the seed filling
phase (MB) while at the end of the seed filling phase (PM),
reproductive parts showed a significant increase in the propor-
tion of accumulated biomass (Narayanan and Reddy 1982;
Atta and Van Cleemput 1988; Couch et al. 2017; Mehmood
et al. 2021). The possible reason for this improvement in re-
productive biomass was the increased assimilate production
by sesame stems and capsules which retained longer than
leaves, and remobilization of assimilates from senescing
leaves towards the capsules and developing seed tissues.
Such trends of assimilate production by capsules and remobi-
lization from leaves were reported earlier in filed pea and
soybean (Flinn and Pate 1970; Andrews and Svec 1975,
1976). Hence, it is convincible that photosynthesis by sesame
stems and capsules, and remobilization from senescing leaves
contributed to increasing the reproductive biomass at
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Fig. 4 Number of capsules per plant (a), number of seeds per capsule (b), thousand seed weight (c), and seed yield (d) of sesame in 2018 and 2019. The
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Table 6 Economic analysis for different sesame cultivars and Sulphur
treatments in 2018 and 2019

Treatments Net income (US $ ha−1)

2018 2019 Average

Cultivar TS-5 584.3 575.0 579.7

TS-3 511.7 491.1 501.4

Sulphur S0 434.7 420.7 427.7

S20 512.1 518.3 515.2

S40 631.8 603.2 617.5

S60 560.5 542.8 551.6

The S0, S20, S40, and S60 represent the sulphur treatments, Control, 20, 40,
and 60 kg ha−1 , respectively. The exchange rate for the US dollar was
138.9 and 155.3 Pakistani Rupee (PKR) in 2018 and 2019, respectively
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maturity. However, the photosynthetic ability of sesame stems
and capsules is still unknown and warrants detailed investiga-
tion. Hence, our results indicate that from MB to PM, sesame
plants had the chance to enhance the biomass accumulation
and partitioning to plant organs, if the conditions are favorable
during growing period, such as improved nutrient availability
and uptake, which can be maintained through an optimum
level of S application, as observed during this study.

We determined that all the treatments significantly altered
the total N, P, K, and S accumulation and distribution into
different plant parts (leaves, stem, capsules, and seeds) of
sesame at MB and PM, depending on the nutrient require-
ments (low and high) in various parts. In the past, researchers
have inferred and regarded seeds as the most active and vital
sink for photoassimilate and nutrients during the reproductive
phase (Couch et al. 2017; Kitonyo et al. 2018). Likewise, N, P,
K, and S uptake in leaves and capsules reduced from MB to
PM, suggesting that uptake and remobilization of these nutri-
ents to other plant parts of sesame, possibly in seeds and stems
were increased. Additionally, partitioning of N, P, K, and S in
leaves is critical in maintaining the higher rate of
photoassimilate production, and accumulation of these nutri-
ents depends on the photosynthetic capacity of plants, which
governs the nutrient allocation patterns in various plant organs
(Raza et al. 2020). In past studies, scientists have reported that
low S availability can reduce the total uptake of nutrients
especially N, P, K, and S in plants (Abdallah et al. 2010;
Motior et al. 2011; Girondé et al. 2014). Correspondingly,
treatment S40 enhanced the S availability, which might im-
prove the biomass partitioning and carbohydrates transloca-
tion in roots as well and ultimately enhance the nutrients up-
take (Henry and Raper Jr 1991; Abdallah et al. 2010).
Previously, scientists have reported that increased S availabil-
ity due to an adequate supply of S could improve the N-uptake
during the reproductive growth, which ultimately increases
the seed yield of crops (Abdallah et al. 2010; Motior et al.
2011), as noted in this study. Compared with N-uptake, P-
uptake occurs throughout the growing period of crops
(Batten 1992), whereas a substantial amount of P accumula-
tion was documented during seed filling (Papakosta 1994), as
observed in our experiment. Similarly, an increase in K-
uptake and S-uptake in response to S fertilization is also re-
ported in several investigations (Motior et al. 2011; Raza et al.
2018a, 2018b). Thus, enhanced S availability through opti-
mum S fertilization could enhance the nutrients accumulation,
distribution, and uptake in various plant organs by maintain-
ing a high supply of assimilates and improving the microen-
vironment of crop plants.

Application of S fertilizer at the rate of 40 kg ha−1 (S40)
produced the highest seed yield, with an increment of 28%, as
compared to control (S0). Furthermore, we also observed that
different S levels significantly increased the number of cap-
sules per plant, number of seeds per capsule, and thousand

seed weight, while maximum values for these yield compo-
nents were observed under S40 treatment during both years.
Therefore, the highest sesame yield was ascribed to heavier
sesame seeds and greater capsules number per plant and seeds
per capsule. Another reason for these increments might be the
availabi l i ty of supplementary carbohydrates and
photoassimilate due to enhanced photosynthetic capacity of
sesame under optimum S availability which increased the bio-
mass and nutrient accumulation that ultimately lead to
improvements in seed yield and yield components of
sesame (Raza et al. 2018b). Our results were consistent
with earlier reported findings where an optimum S ap-
plication (40–50 kg ha−1) enhanced the seed yield of
sesame (Shah et al. 2013; Raza et al. 2018a, 2018b).
Hence, adequate S availability during seed filling could
improve the seed yield of sesame by improved accumu-
lation and distribution of dry matter and nutrients in
plant organs.

The economic analysis of the current study revealed that in
comparison with control, higher net returns by 44% were
achieved under the S40 treatment. Farming communities only
adopt strategies that can provide greater yield and net econom-
ic returns for the farmers (Raza et al. 2018b). Hence, treatment
S40 increased the dry matter accumulation, nutrient uptake of
N, P, K, and S, which ultimately improved the sesame pro-
ductivity and provided higher net returns for farmers.

Conclusion

This research provided evidence for different patterns of bio-
mass accumulation and nutrient uptake (N, P, K, and S), and
their partitioning in plant organs of sesame at the mid-bloom
and physiological maturity under different S treatments.
Based on our research, results revealed that greater dry matter
production, nutrient uptake, and seed yield is possible in ses-
ame with an optimum (S40 = 40 kg ha−1) amount of S appli-
cation, which could also improve the net economic returns for
the farmers. To the best of our knowledge, this research is the
first to report the effects of S application on nutrient uptake
and partitioning in sesame. However, further research is war-
ranted to completely understand the mechanisms regulating
the increased nutrient uptake, specifically during the seed fill-
ing phase of sesame.
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