13 research outputs found

    Identification of DUSP4/6 overexpression as a potential rheostat to NRAS-induced hepatocarcinogenesis

    Get PDF
    Background Upregulation of the mitogen-activated protein kinase (MAPK) cascade is common in hepatocellular carcinoma (HCC). Neuroblastoma RAS viral oncogene homolog (NRAS) is mutated in a small percentage of HCC and is hitherto considered insufficient for hepatocarcinogenesis. We aimed to characterize the process of N-Ras-dependent carcinogenesis in the liver and to identify potential therapeutic vulnerabilities. Methods NRAS V12 plasmid was delivered into the mouse liver via hydrodynamic tail vein injection (HTVI). The resulting tumours, preneoplastic lesions, and normal tissue were characterized by NanoString® gene expression analysis, Western Blot, and Immunohistochemistry (IHC). The results were further confirmed by in vitro analyses of HCC cell lines. Results HTVI with NRAS V12 plasmid resulted in the gradual formation of preneoplastic and neoplastic lesions in the liver three months post-injection. These lesions mostly showed characteristics of HCC, with some exceptions of spindle cell/ cholangiocellular differentiation. Progressive upregulation of the RAS/RAF/MEK/ERK signalling was detectable in the lesions by Western Blot and IHC. NanoString® gene expression analysis of preneoplastic and tumorous tissue revealed a gradual overexpression of the cancer stem cell marker CD133 and Dual Specificity Phosphatases 4 and 6 (DUSP4/6). In vitro, transfection of HCC cell lines with NRAS V12 plasmid resulted in a coherent upregulation of DUSP4 and DUSP6. Paradoxically, this upregulation in PLC/PRF/5 cells was accompanied by a downregulation of phosphorylated extracellular-signal-regulated kinase (pERK), suggesting an overshooting compensation. Silencing of DUSP4 and DUSP6 increased proliferation in HCC cell lines. Conclusions Contrary to prior assumptions, the G12V NRAS mutant form is sufficient to elicit hepatocarcinogenesis in the mouse. Furthermore, the upregulation of the MAPK cascade was paralleled by the overexpression of DUSP4, DUSP6, and CD133 in vivo and in vitro. Therefore, DUSP4 and DUSP6 might fine-tune the excessive MAPK activation, a mechanism that can potentially be harnessed therapeutically

    FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted

    Get PDF
    [EN] Background & Aims: Cholangiocarcinoma (CCA) is a neoplasia of the biliary tract driven by genetic, epigenetic and transcriptional mechanisms. Herein, we investigated the role of the transcription factor FOSL1, as well as its downstream transcriptional effectors, in the development and progression of CCA. Methods: FOSL1 was investigated in human CCA clinical samples. Genetic inhibition of FOSL1 in human and mouse CCA cell lines was performed in in vitro and in vivo models using constitutive and inducible short-hairpin RNAs. Conditional FOSL1 ablation was done using a genetically engineered mouse (GEM) model of CCA (mutant KRAS and Trp53 knockout). Followup RNA and chromatin immunoprecipitation (ChIP) sequencing analyses were carried out and downstream targets were validated using genetic and pharmacological inhibition. Results: An inter-species analysis of FOSL1 in CCA was conducted. First, FOSL1 was found to be highly upregulated in human and mouse CCA, and associated with poor patient survival. Pharmacological inhibition of different signalling pathways in CCA cells converged on the regulation of FOSL1 expression. Functional experiments showed that FOSL1 is required for cell proliferation and cell cycle progression in vitro, and for tumour growth and tumour maintenance in both orthotopic and subcutaneous xenograft models. Likewise, FOSL1 genetic abrogation in a GEM model of CCA extended mouse survival by decreasing the oncogenic potential of transformed cholangiocytes. RNA and ChIP sequencing studies identified direct and indirect transcriptional effectors such as HMGCS1 and AURKA, whose genetic and pharmacological inhibition phenocopied FOSL1 loss. Conclusions: Our data illustrate the functional and clinical relevance of FOSL1 in CCA and unveil potential targets amenable to pharmacological inhibition that could enable the implementation of novel therapeutic strategies. Lay summary: Understanding the molecular mechanisms involved in cholangiocarcinoma (bile duct cancer) development and progression stands as a critical step for the development of novel therapies. Through an inter-species approach, this study provides evidence of the clinical and functional role of the transcription factor FOSL1 in cholangiocarcinoma. Moreover, we report that downstream effectors of FOSL1 are susceptible to pharmacological inhibition, thus providing new opportunities for therapeutic intervention.A.V. was supported by ADA of the University of Navarra, Spain, O.E. by FSE; MINECO; FJCI-2017-34233, Spain, R.E. by a donation from Mauge Burgos de la Iglesia’s family, Spain, and P. Olaizola by the Basque Government (PRE_2016_1_0269), Basque Country, Spain. M.J.P. was funded by ISCIII [FIS PI14; 00399, PI17; 00022] cofinanced by “Fondo Europeo de Desarrollo Regional” (FEDER), Spain; Spanish Ministry of Economy and Competitiveness (MINECO: “Ramón y Cajal” Program RYC-2015-17755), Spain. M.A.A was funded by La Caixa Foundation, HEPACARE project, Spain, ISCIII FIS PI16/01126 cofinanced by “Fondo Europeo de Desarrollo Regional” (FEDER), Spain, and “Fundación Científica de la Asociación Española Contra el Cáncer’’ (AECC Scientific Foundation) Rare Cancers 2017, Spain. J.M.B. was funded by the Spanish Carlos III Health Institute (ISCIII) (FIS PI15; 01132, PI18; 01075 and Miguel Servet Program CON14; 00129 and CPII19; 00008), Spain, co-financed by “Fondo Europeo de Desarrollo Regional” (FEDER), Spain; “Euskadi RIS3” (2019222054) and BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15; CA; 016; BD), Basque Country, Spain; “Fundación Científica de la Asociación Española Contra el Cáncer” (AECC Scientific Foundation) Rare Cancers 2017, Spain. S.V. was supported by FEDER; MINECO (SAF2017-89944-R), Spain, by the Government of Navarra-Health Research Department (58; 2018), Navarra, Spain, by La Caixa and Caja Navarra Foundation-CIMA agreement, Spain. None of the funding sources were involved in the decision to submit the article for publication. This article is based upon work from COST Action CA18122 European Cholangiocarcinoma Network, supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks (www.cost.eu)

    FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted

    Get PDF
    Understanding the molecular mechanisms involved in cholangiocarcinoma (bile duct cancer) development and progression stands as a critical step for the development of novel therapies. Through an inter-species approach, this study provides evidence of the clinical and functional role of the transcription factor FOSL1 in cholangiocarcinoma. Moreover, we report that downstream effectors of FOSL1 are susceptible to pharmacological inhibition, thus providing new opportunities for therapeutic intervention

    A meta-analysis of pre-pregnancy maternal body mass index and placental DNA methylation identifies 27 CpG sites with implications for mother-child health

    Get PDF
    Higher maternal pre-pregnancy body mass index (ppBMI) is associated with increased neonatal morbidity, as well as with pregnancy complications and metabolic outcomes in offspring later in life. The placenta is a key organ in fetal development and has been proposed to act as a mediator between the mother and different health outcomes in children. The overall aim of the present work is to investigate the association of ppBMI with epigenome-wide placental DNA methylation (DNAm) in 10 studies from the PACE consortium, amounting to 2631 mother-child pairs. We identify 27 CpG sites at which we observe placental DNAm variations of up to 2.0% per 10 ppBMI-unit. The CpGs that are differentially methylated in placenta do not overlap with CpGs identified in previous studies in cord blood DNAm related to ppBMI. Many of the identified CpGs are located in open sea regions, are often close to obesity-related genes such as GPX1 and LGR4 and altogether, are enriched in cancer and oxidative stress pathways. Our findings suggest that placental DNAm could be one of the mechanisms by which maternal obesity is associated with metabolic health outcomes in newborns and children, although further studies will be needed in order to corroborate these findings.We would like to thank the Pregnancy and Childhood Epigenetics (PACE) consortium, as well as all the families that participated in these studies for their generous contribution. This work was partially funded by GVSAN2018111086 from the Basque Department of Health and PI18/01142 from ISCIII - Spanish Ministry of Science and Innovation - cofounded by the ERDF “A way to make Europe” to JRB and LSM, respectively; and by the Joint Programming Initiative – A Healthy Diet for a Healthy Life (JPI HDHL) (NutriPROGRAM). ACP was supported by grant GVSAN2019111085 from the Basque Department of Health to NFJ. Detailed acknowledgements and funding for each participating cohort are described in Supplementary Note 1

    GPR15 facilitates recruitment of regulatory T cells to promote colorectal cancer.

    No full text
    Colorectal cancer (CRC) is one of the most frequent malignancies worldwide. Despite considerable progress in early detection and treatment, there is still an unmet need for novel anti-tumor therapies, particularly in advanced CRC. Regulatory T cells (Tregs) are increased in the peripheral blood and tumor tissue of CRC patients. Recently, transient ablation of tumor-associated Tregs was shown to foster CD8+ T cell-mediated anti-tumoral immunity in murine CRC models. However, before considering therapies, targeting Tregs in cancer patients and detailed knowledge of the phenotype and features of tumor-associated Tregs is indispensable. Here we demonstrate in a murine model of inflammation-induced CRC that tumor-associated Tregs are mainly of thymic origin and equipped with a specific set of molecules strongly associated with enhanced migratory properties. Particularly, a dense infiltration of Tregs in mouse and human CRC lesions correlated with increased expression of the orphan chemoattractant receptor GPR15 on these cells. Comprehensive gene expression analysis revealed that tumor-associated GPR15+ Tregs have a Th17-like phenotype, thereby producing IL-17 and TNF-α. Gpr15 deficiency repressed Treg infiltration in CRC, which paved the way for enhanced anti-tumoral CD8+ T cell immunity and reduced tumorigenesis. In conclusion, GPR15 represents a promising novel target for modifying T cell-mediated anti-tumoral immunity in CRC

    The IL-33/ST2 pathway shapes the regulatory T cell phenotype to promote intestinal cancer.

    Get PDF
    The composition of immune infiltrates strongly affects the prognosis of patients with colorectal cancer (CRC). Interleukin (IL)-33 and regulatory T cells (Tregs) in the tumor microenvironment have been separately implicated in CRC; however their contribution to intestinal carcinogenesis is still controversial. Here, we reveal that IL-33 signaling promotes CRC by changing the phenotype of Tregs. In mice with CRC, tumor-infiltrating Tregs preferentially upregulate IL-33 receptor (ST2), and IL-33/ST2 signaling positively correlates with tumor number and size. Transcriptomic and flow cytometry analyses demonstrate that ST2 expression induces a more activated and migratory phenotype in FOXP3 Tregs, which favors their accumulation in the tumor environment. Consequently, genetic ablation of St2 reduces Treg infiltration and concomitantly enhances the frequencies of effector CD8 T cells, thereby restraining CRC. Mechanistically, IL-33 curtails IL-17 production by FOXP3 Tregs and inhibits Th17 differentiation. In humans, numbers of activated ST2-expressing Tregs are increased in blood and tumor lesions of CRC patients, suggesting a similar mode of regulation. Together, these data indicate a central role of IL-33/ST2 signaling in shaping an immunosuppressive environment during intestinal tumorigenesis. Blockade of this pathway may provide a strategy to modulate the composition of CRC immune infiltrates

    FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted

    No full text
    Background & Aims: Cholangiocarcinoma (CCA) is a neoplasia of the biliary tract driven by genetic, epigenetic and transcriptional mechanisms. Herein, we investigated the role of the transcription factor FOSL1, as well as its downstream transcriptional effectors, in the development and progression of CCA. Methods: FOSL1 was investigated in human CCA clinical samples. Genetic inhibition of FOSL1 in human and mouse CCA cell lines was performed in in vitro and in vivo models using constitutive and inducible short-hairpin RNAs. Conditional FOSL1 ablation was done using a genetically engineered mouse (GEM) model of CCA (mutant KRAS and Trp53 knockout). Followup RNA and chromatin immunoprecipitation (ChIP) sequencing analyses were carried out and downstream targets were validated using genetic and pharmacological inhibition. Results: An inter-species analysis of FOSL1 in CCA was conducted. First, FOSL1 was found to be highly upregulated in human and mouse CCA, and associated with poor patient survival. Pharmacological inhibition of different signalling pathways in CCA cells converged on the regulation of FOSL1 expression. Functional experiments showed that FOSL1 is required for cell proliferation and cell cycle progression in vitro, and for tumour growth and tumour maintenance in both orthotopic and subcutaneous xenograft models. Likewise, FOSL1 genetic abrogation in a GEM model of CCA extended mouse survival by decreasing the oncogenic potential of transformed cholangiocytes. RNA and ChIP sequencing studies identified direct and indirect transcriptional effectors such as HMGCS1 and AURKA, whose genetic and pharmacological inhibition phenocopied FOSL1 loss. Conclusions: Our data illustrate the functional and clinical relevance of FOSL1 in CCA and unveil potential targets amenable to pharmacological inhibition that could enable the implementation of novel therapeutic strategies. Lay summary: Understanding the molecular mechanisms involved in cholangiocarcinoma (bile duct cancer) development and progression stands as a critical step for the development of novel therapies. Through an inter-species approach, this study provides evidence of the clinical and functional role of the transcription factor FOSL1 in cholangiocarcinoma. Moreover, we report that downstream effectors of FOSL1 are susceptible to pharmacological inhibition, thus providing new opportunities for therapeutic intervention. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver
    corecore