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� The transcription factor FOSL1 is upregulated in human and mouse
CCA, and is independently associated with patient survival.

� Genetic FOSL1 inhibition impairs cell proliferation and cell cycle
progression in vitro, and tumor initiation and maintenance in vivo.

� The mevalonate pathway gene HMGCS1 is upregulated in human and
mouse CCA, and its expression is controlled by direct FOSL1 pro-
moter binding.

� Genetic HMGCS1 abrogation or pharmacological blockade with
mTOR inhibitors phenocopies loss of FOSL1.
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Background & Aims: Cholangiocarcinoma (CCA) is a neoplasia of the oncogenic potential of transformed cholangiocytes. RNA and

the biliary tract driven by genetic, epigenetic and transcriptional
mechanisms. Herein, we investigated the role of the transcrip-
tion factor FOSL1, as well as its downstream transcriptional ef-
fectors, in the development and progression of CCA.
Methods: FOSL1 was investigated in human CCA clinical sam-
ples. Genetic inhibition of FOSL1 in human and mouse CCA cell
lines was performed in in vitro and in vivo models using
constitutive and inducible short-hairpin RNAs. Conditional
FOSL1 ablation was done using a genetically engineered mouse
(GEM) model of CCA (mutant KRAS and Trp53 knockout). Follow-
up RNA and chromatin immunoprecipitation (ChIP) sequencing
analyses were carried out and downstream targets were vali-
dated using genetic and pharmacological inhibition.
Results: An inter-species analysis of FOSL1 in CCA was con-
ducted. First, FOSL1 was found to be highly upregulated in hu-
man and mouse CCA, and associated with poor patient survival.
Pharmacological inhibition of different signalling pathways in
CCA cells converged on the regulation of FOSL1 expression.
Functional experiments showed that FOSL1 is required for cell
proliferation and cell cycle progression in vitro, and for tumour
growth and tumour maintenance in both orthotopic and sub-
cutaneous xenograft models. Likewise, FOSL1 genetic abrogation
in a GEM model of CCA extended mouse survival by decreasing
words: FOSL1; cholangiocarcinoma; transcription factors; genetics; targeted
rapies.
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ChIP sequencing studies identified direct and indirect tran-
scriptional effectors such as HMGCS1 and AURKA, whose genetic
and pharmacological inhibition phenocopied FOSL1 loss.
Conclusions: Our data illustrate the functional and clinical
relevance of FOSL1 in CCA and unveil potential targets amenable
to pharmacological inhibition that could enable the imple-
mentation of novel therapeutic strategies.
Lay summary: Understanding the molecular mechanisms
involved in cholangiocarcinoma (bile duct cancer) development
and progression stands as a critical step for the development of
novel therapies. Through an inter-species approach, this study
provides evidence of the clinical and functional role of the
transcription factor FOSL1 in cholangiocarcinoma. Moreover, we
report that downstream effectors of FOSL1 are susceptible to
pharmacological inhibition, thus providing new opportunities
for therapeutic intervention.
© 2021 The Authors. Published by Elsevier B.V. on behalf of European
Association for the Study of the Liver. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
Introduction
Human cholangiocarcinoma (CCA) includes a heterogeneous
group of cancers of the biliary tract with dismal prognosis. The
incidence of CCA is increasing globally, and currently represents
~3% of all gastro-intestinal tumours.1 The asymptomatic nature
of these tumours in early stages and their chemo-resistance lead
to poor outcomes. Numerous studies have catalogued the
genomic and molecular landscape of CCA in search of actionable
molecular targets that hold promise for tailored treatments.2–10

These studies unveiled KRAS, BRAF, IDH1/2, FGFR2 or EGFR as
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prevalent and central oncogenic drivers in CCA. While KRAS is
mutated across intrahepatic and extrahepatic CCA (iCCA and
eCCA) subtypes,8,11,12 FGFR2 and IDH1/2 genomic alterations are
rarely detected in eCCA.2–6,11,13–15 Targeted therapies to most of
these oncogenes are currently undergoing evaluation in the
clinic. Despite promising results with IDH1/2 and FGFR2 in-
hibitors, patients display modest responses, most likely due to
intrinsic or adaptive resistance mechanisms that limit their anti-
tumour effect.16–20 Thus, a better knowledge of the underlying
molecular mechanisms orchestrated by oncogenic drivers in
CCA, especially those lacking therapeutic options such as KRAS,
may facilitate the identification of novel interventional
strategies.

Genomic alterations in CCA are associated with defined gene
expression profiles. For instance, human CCAs harbouring KRAS
mutations (8-47% of cases) feature a gene expression signature
that is associated with poor prognosis.7,10 These observations
suggest that transcriptional nodes may play a functionally
relevant role in CCA. A few transcription regulators, including
NOTCH genes,21,22 YAP1,23 FOXM1,24 SOX9,24 SOX1725 or TCF726

have been reported to function in CCA development and/or
progression. Nonetheless, beyond NOTCH receptors, no targeted
therapies are yet available against such transcriptional regula-
tors. Given the dismal prognosis of patients with CCA, the
identification of relevant transcription factors in the context of
dominant oncogenes, as well as the characterization of their
transcriptional network, remains a relevant task as this may
unveil new tumour vulnerabilities amenable to pharmacolog-
ical inhibition.

We previously described a cross-tumour signature upregu-
lated in CCA, as well as in lung and pancreas cancer, whose
high expression was a marker of poor survival.27 In addition to
other genes involved in CCA, such as AREG and LAMC2,28,29

the cross-tumour signature included the transcription factor
FOSL1, a member of the AP1 complex that hetero-dimerizes
with members of the JUN family for proficient transcriptional
activity.30 FOSL1mRNA and protein expression is upregulated in
a wide variety of tumour types, where it plays an oncogenic
role by modulating various cellular processes such as prolifer-
ation, differentiation, invasion, epithelial-mesenchymal transi-
tion and/or drug resistance.31,32 In the context of dominant
oncogenes, FOSL1 represents a vulnerability in lung and
pancreatic cancer driven by oncogenic KRAS.27,33–35 Nonethe-
less, data regarding FOSL1’s role in cholangiocarcinogenesis is
far from conclusive. On the one hand, early studies reported
that Fosl1 expression in transgenic mice triggers ductular pro-
liferation and infiltration of inflammatory cells, leading to
biliary fibrosis and suggesting a pro-oncogenic function.36 On
the other hand, a recent integrative analysis of human CCA data
sets predicted FOSL1 downregulation in neoplastic tissue,
postulating a tumour suppressor role.37 In light of these find-
ings, additional studies to resolve the function of FOSL1 in CCA
are required.

Using a multimodal inter-species approach combining clinical
data, human and mouse CCA cell lines, and genetically engi-
neered mouse (GEM) models, we found that FOSL1 is a relevant
transcription factor in CCA that is in part positively regulated by
KRAS. Moreover, molecular analysis of FOSL1 downstream effec-
tors using RNA and chromatin immunoprecipitation (ChIP)
sequencing analysis, as well as genetic and pharmacological
inhibitory strategies, unveiled direct and indirect transcriptional
364 Journal of Hepatology 2
targets that represent actionable elements for the implementa-
tion of innovative therapeutic strategies.

Materials and methods
For details regarding the materials and methods used, please
refer to the CTAT table and supplementary information.

Results
FOSL1 is upregulated in cholangiocarcinoma and correlates
with poor survival
To address the role of FOSL1 in CCA, we first performed immu-
nohistochemistry (IHC) analyses in a cohort of 209 patients with
surgically resected iCCA (median resection age: 67; sex: 93 fe-
male, 116 male; stage: 176 early, 24 late, 9 unknown). Only 13
patients (6.22%) received neoadjuvant therapy prior to surgery
(Table S1). A uniform nuclear FOSL1 staining was observed in the
tumorous tissue (>90% of cells stained positive) of most patients
(n = 177, 84.689%) while no expression was found in non-
tumorous liver from adjacent normal tissue and in normal bile
ducts (Fig. 1A and Fig. S1A). In addition, FOSL1 positive staining
was observed in 18 of 21 preinvasive lesions, including 11 intra-
ductal papillary biliary neoplasms (IPBN) and 7 biliary epithelial
neoplasias (not shown) (Fig. S1B).

Patients with CCA and FOSL1 expression had shorter overall
survival (p = 0.0371) (Fig. 1B). Given the adverse effect of KRAS
and BRAF mutations on overall CCA survival,7,10 patients were
stratified according to their mutational status. Patients carrying
CCA tumours with combined FOSL1 expression and mutations in
KRAS or BRAF had the lowest survival outcome (p = 0.0017)
(Fig. 1C). Furthermore, direct comparison of FOSL1-expressing
CCAs with and without KRAS or BRAF mutations revealed a sig-
nificant survival difference (p = 0.019) (Fig. 1C). Multivariate
analysis showed that FOSL1 expression is independently asso-
ciated with survival (LogTest p value: 0.006; FOSL1 p value:
0.046; TNM p value: 0.023; KRAS/BRAF mut p value: 0.002; sex p
value: 0.366; age p value: 0.777).

Next, we investigated FOSL1 expression in a panel of CCA cell
lines with distinct mutational background as well as in normal
primary cultures and SV-40 immortalized human chol-
angiocytes. FOSL1 upregulation was generally observed in CCA
cells compared to non-tumourous cholangiocytes, as revealed by
different bands representative of various human FOSL1 isoforms
(Fig. 1D), suggesting regulation by cell-autonomous mechanisms.

Then, we studied FOSL1 expression in a GEM model of iCCA
driven by liver-specific Kras mutations and Trp53 deletion
(AlbuminCre/+; KrasLSL-G12D/+; Trp53f/f, hereafter referred to as
AKP).38 This model recapitulates histologic and molecular fea-
tures of multistage progression of human iCCA, including the
biliary typical lesion IPBN. IHC analysis of adjacent normal tissue
showed a lack of FOSL1 expression in normal hepatocytes and
cholangiocytes (Fig. 1E). Conversely, CCA lesions, featuring a
prominent stroma and Ck19 expression, exhibited pronounced
nuclear FOSL1 expression in tumour cells (Fig. 1E). FOSL1
expression was also found in mouse IPBN (Fig. S1C). Differenti-
ated CCA displayed heterogenous FOSL1 expression (n = 6) while
a more uniform and intense pattern was found in poorly differ-
entiated CCA (n = 6) (Fig. S1D and E).

In agreement with the human data, FOSL1 expression was
preferentially observed in cancer cell lines derived from AKP
mice compared to normal mouse cholangiocytes (Fig. 1F),
although only 1 band was observed in mouse lysates. FOSL1
021 vol. 75 j 363–376
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Fig. 1. FOSL1 expression in cholangiocarcinoma. (A) Representative images of human CCA stained with indicated antibodies or H&E. Scale bars are 100 lm. NL:
Normal liver; T: Tumour; Asterisk: Fibrotic tissue. (B) Survival analysis of patients with iCCA stratified by FOSL1 expression (Log-rank test). (C) Survival analysis of
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protein expression in mouse CCA cell lines was consistent but
variable among tumor cell lines with regard to normal mouse
cholangiocytes. This is in accordance with the heterogeneous
FOSL1 expression reported in cell lines derived from other
epithelial tumors driven by oncogenic Kras and p53 loss.27 The
Journal of Hepatology 2
variability in FOSL1 expression may be explained in part by po-
tential copy gain of the mutant Kras allele39,40 or by a different
chromosomic instability pattern elicited upon heterozygous or
homozygous inactivation of p53 in mouse CCA cells.38 Collec-
tively, the human and mouse observations suggest that FOSL1
021 vol. 75 j 363–376 365
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expression is intimately associated with CCA and has implica-
tions for patient prognosis.

FOSL1 is regulated by multiple signaling pathways in CCA
The results in human CCA suggested that different oncogenic
signals regulate FOSL1 expression. We carried out pharmaco-
logical inhibition of several signaling pathways involved in CCA41

to dissect their potential involvement in FOSL1 regulation. In
eCCA (EGI-1) and iCCA (HUCCT1) cell lines, various signaling
pathways including MEK1/2, MEK5, JNK1/2, PI3K and IKK regu-
lated FOSL1 expression (Fig. 2A). Of note, FOSL1 downregulation
upon inhibition of MEK1/2, MEK5 and PI3K was also seen in a
mouse CCA cell line (339) directly derived from the AKP GEM
model (Fig. 2B).

Based on the clinical data suggesting an association between
FOSL1 and KRAS, gain- and loss-of-function experiments were
carried out to test their potential relationship. Overexpression of
exogenous mutant KRAS in immortalized cholangiocytes led to
upregulation of FOSL1 (Fig. 2C). Conversely, KRAS knockdown in
eCCA and iCCA cell lines decreased FOSL1 expression (Fig. 2D). To
test if FOSL1 regulation by KRAS extended to the mouse setting,
we deployed mouse cholangiocytes isolated from KrasLSL-G12D/+
eCCA (EGI-1)
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(K) and KrasLSL-G12D/+; Trp53f/f (KP) mice, following previously
described protocols.42,43 In these cholangiocytes, Kras is regu-
lated through its endogenous promoter and its activation, along
with Trp53 deletion, is achieved by exogenous administration of
adenoviral Cre recombinase (adCre) (Fig. S2A). Upon adCre
administration, Fosl1 mRNA and protein expression increased in
K and KP cholangiocytes compared to wild-type counterparts
(Fig. 2E), indicating that Fosl1 expression is under the control of
the Kras oncogene. FOSL1 protein was also slightly upregulated
in Trp53 knockout cholangiocytes compared to wild-type ones,
suggesting that Trp53 also regulates FOSL1 expression (Fig. S2B).
Interestingly, expression of mutant Kras alone or in the presence
of concomitant Trp53 deletion increased the proliferative and
clonogenic potential of mouse cholangiocytes (Fig. S2C). These
results indicate that KRAS mutations contribute to FOSL1 regu-
lation and highlight the oncogenic role of Kras in cholangio-
carcinogenesis.

CCA cell lines are sensitive to FOSL1 silencing in vitro
To determine the functional relevance of FOSL1 in human CCA, its
expression was depleted in eCCA and iCCA cell lines by
tetracycline-inducible short-hairpin RNAs (shRNAs). Genetic
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experiments. eCCA, extrahepatic cholangiocarcinoma; iCCA, intrahepatic cholangiocarcinoma; shRNA, short-hairpin RNA.
inhibition of FOSL1was achieved by 4 days of incubationwith the
tetracycline analogue doxycycline (Fig. 3A), when the different
functional assays were seeded. First, FOSL1 inhibition decreased
cell proliferation of CCA cells (Fig. 3B). Additionally, FOSL1
knockdown impaired the colony forming ability of CCA cell lines
(Fig. 3C). Fosl1 function was also investigated in mouse CCA using
339 cells and an additional cell line, KPch, isolated from tumours
generated by subcutaneous injection of adCre-treated KP mouse
cholangiocytes. Both cell lines expressed Ck19, a marker of
cholangiocyte lineage (Fig. S3A). In line with the human data,
Fosl1 depletion by 2 constitutive shRNAs led to a reduction in the
proliferative and colony formation potential of both mouse CCA
cell lines (Fig. 3D-F).

At the cellular level, FOSL1 knockdown robustly impaired the
cell cycle in both human and mouse CCA cells by inducing a G1
phase arrest and, consequently, a reduction in the percentage of
Journal of Hepatology 2
cells progressing to S phase (Fig. 3G and H). By contrast, no
consistent differences regarding apoptosis were observed
(Fig. S3B and C). The observed G1 phase arrest was related to an
increase in the percentage of senescent cells. This result suggests
that FOSL1 expression favours senescence escape and prolifera-
tion in CCA cell lines (Fig. S3D).

CCA growth and maintenance is compromised by FOSL1
inhibition in vivo
Next, we asked whether FOSL1 would be required for CCA
growth in vivo. To do this, human eCCA and iCCA cell lines
expressing the same inducible shRNAs targeting FOSL1 were
used. Immune-deficient mice were inoculated with these cells
before being given 2 mg/ml of doxycycline from day 0 post-
injection until the end of the experiment. In both cell-derived
xenograft (CDX) models, FOSL1-silenced cell lines yielded
021 vol. 75 j 363–376 367
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Fig. 4. In vivo FOSL1 inhibition impairs tumour formation and growth in CCA cell lines. (A) Growth kinetics of tumours from eCCA (EGI-1, n = 6-8) and iCCA
(HUCCT1, n = 8) expressing 2 shRNAs against FOSL1 or a control shRNA. Doxy: 2 mg/ml doxycycline in drinking water containing 5% sucrose (Dunnett’s or Dunn’s
multiple comparison test). (B) Representative images of the tumours in A at sacrifice. (C) Box and whiskers plot showing tumour weight at sacrifice (EGI-1, n = 6-
8; HUCCT1, n = 8) (Dunnett’s multiple comparison test). (D-F) Growth kinetics of tumours from eCCA (EGI-1, n = 8) and iCCA (HUCCT1, n = 8) expressing 2 shRNAs
against FOSL1 or a control. Doxy: 2 mg/ml doxycycline in drinking water containing 5% sucrose (Dunnett’s multiple comparison test). (E) Representative images of
the tumours in D at sacrifice. (F) Box and whiskers plot showing tumour weight at sacrifice (EGI-1 n = 8 and HUCCT1 n = 8) (Holm-Sidak’s or Dunnett’s multiple
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cholangiocarcinoma; eCCA, extrahepatic cholangiocarcinoma; iCCA, intrahepatic cholangiocarcinoma; shRNA, short-hairpin RNA.
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tumours of significant smaller volume and weight than those
derived from control cells (Fig. 4A-C). Similar results were ob-
tained in CDXs derived from mouse CCA cells (KPch) (Fig. S4A-C).

To test the functional relevance of FOSL1 as a potential mo-
lecular target, we investigated its role in established mutant
KRAS CCA tumours. ShRNA activation was done when tumours
reached an average tumour volume of 80-100 mm3. IHC anal-
ysis of CDXs 5 days after doxycycline administration showed
successful FOSL1 inhibition (Fig. S4D). FOSL1 depletion led to
368 Journal of Hepatology 2
tumour volume reduction compared to control shRNA in the 2
cell lines investigated (Fig. 4D and E). Likewise, tumour weight
of FOSL1-inhibited cells was smaller at the end of the experi-
ment (Fig. 4F).

To rule out differences emerging from the site of implanta-
tion, we developed an orthotopic model by engrafting small
pieces of a human CCA CDX into the liver of immune-deficient
mice (n = 6 per group) as we previously described.44 To do
this, we capitalized on the human EGI-1 cells already engineered
021 vol. 75 j 363–376



to express TET-inducible shRNAs. Tumours were monitored by
ultrasound and doxycycline treatment was initiated (to activate
shRNA expression) when an average volume of 1.5–2.0 mm3 was
reached. Relative analysis of tumour volume at day 0 and at the
end of the experiment revealed an average reduction of 60% in
the group of mice implanted with FOSL1-depleted cells
compared to the control group (Fig. 4G and H). Collectively, these
results suggest that FOSL1 plays a relevant functional role in CCA
progression, where it may represent a molecular target.

Fosl1 abrogation extends overall survival and decreases
tumour burden in a GEM model
To study FOSL1 function in a physiologically relevant system that
recapitulates cholangiocarcinogenesis, we took advantage of the
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AKP model. First, we bred AKP mice to Fosl1f/f mice to obtain
AlbuminCre/+; KrasLSL-G12D/+; Trp53f/f; Fosl1f/f (AKPF) mice (Fig. 5A).
Then, survival analyses were undertaken in AKP (n = 19) and
AKPF (n = 23) mice. We observed that AKPF mice have a higher
overall survival compared to AKP mice expressing Fosl1 (p
<0.0001) (Fig. 5B). Of note, the survival differences remained
significant even when mice were stratified by sex (p = 0.0077,
male; p = 0.0074, female) (Fig. 5C and D).

In the AKP model, expression of mutant Kras and Trp53 in
adult mouse cholangiocytes induces CCA.45 To test if Fosl1 had
any role on CCA originated from adult mouse cholangiocytes
transformed by simultaneous Kras mutation and Trp53 ablation,
normal cholangiocytes were isolated from KrasLSL-G12D/+; Trp53f/f

(KP) and KrasLSL-G12D/+; Trp53f/f; Fosl1f/f (KPF) mice. These
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cholangiocytes were treated with adCre in vitro to flox the cor-
responding alleles (Fig. 5E and Fig. S5A-B) and subsequently
injected into the lower flank of immune-deficient mice. Both KP-
and KPF-derived CDXs expressed Ck19 (Fig. S5D). Analyses of
tumour volume from KP and KPF cholangiocytes revealed that
tumours arising from Fosl1-depleted cells had a smaller volume
compared to Fosl1-proficient ones (Fig. 5F and G). Likewise,
weight was also reduced in tumours lacking Fosl1 expression (Fig
5H). The data from the GEM and the primary cholangiocyte
models provide evidence that Fosl1 has a relevant role in mouse
cholangiocarcinogenesis by affecting overall survival, a finding
explained in part by the down-modulation of the oncogenic
potential of transformed cholangiocytes.

Direct and indirect regulation of pro-oncogenic
transcriptional effectors by FOSL1
Next, we explored the transcriptome changes controlled by
FOSL1. RNA sequencing was performed in EGI-1 cells where
FOSL1 was knocked-out by 2 inducible shRNAs and compared
with control cells (B >0). This analysis yielded a list of 56
downregulated and 73 upregulated genes (Table S2). We focused
on downregulated genes for subsequent analysis as they could
represent potential molecular targets for eventual genetic and
pharmacological inhibitory strategies (Fig. 6A). This list included
several cyclin kinases involved in G1 to S transition that could
explain the G1 arrest elicited by FOSL1 inhibition, such as CDK2,
CDK6 and CDK7 (Fig. S6A). Gene Ontology (GO) analysis of the
downregulated genes revealed an enrichment of biological pro-
cesses involving cholesterol and steroid biosynthesis, and mito-
chondrial electron transport and ATP synthesis (p <0.005)
(Fig. 6B). Next, protein-protein interaction (PPI) examination of
the downregulated gene set using STRING identified 3 main in-
dependent clusters of genes (Fig. 6C). One cluster featured genes
involved in mitotic progression, including AURKA, previously
described as a downstream target of FOSL1 in lung and pancre-
atic cancer.27 The second cluster involved various genes impli-
cated in the mevalonate (MVA) pathway, cholesterol
biosynthesis and regulation of steroids and lipids (HMGCS1,
ELOVL5, IDI1, INSIG1, MSMO1 and SCD). A third cluster was
formed by mitochondrial genes with NADH dehydrogenase and
reductase activity (MT-ND4L, MT-ND5 and MT-ND3) as well as by
the membrane gene PTGS1, which synthesizes the formation of
thromboxanes and prostaglandins. STRING analysis also revealed
similarly enriched biological pathways to those found by GO
(Fig. S6B). Reverse transcription quantitative PCR (qPCR) analysis
of several genes in each cluster validated the RNA-seq data
(Fig. S6C).

To unveil FOSL1 direct targets, complementary ChIP-seq an-
alyses were performed. We used EGI-1 cells transduced with a
Flag-tagged FOSL1 expression construct (Fig. S6D). A heat map
centred on the FOSL1 peaks illustrated strong enrichment in
chromatin immune-precipitated conditions with regard to input
control (Fig. S6E). Global analysis of the FOSL1-bound regions
revealed that the top-ranking sequence motifs predicted by
MEME and DREME corresponded to members of the AP1 tran-
scriptional complex (Fig. 6D). Binding of FOSL1 to various RNA
species was detected (Fig. 6E and Table S3). Among coding pro-
tein genes, the HMGCS1 promoter sequence stood out as one of
the most enriched regions (-log10pval = 119.43; fold change
[FC] = 13.9) (Fig. 6F). Promoter regions of additional genes within
the cholesterol cluster, such as ELOVL1 (-log10pval = 33.78; FC =
370 Journal of Hepatology 2
7.46), INSIG1 (-log10pval = 27.45; FC = 9.16) and MSMO1
(-log10pval = 12; FC = 4.8) were also bound by FOSL1 (Fig. S6F).
Notably, no enrichment of FOSL1 binding to the AURKA promoter
was found, suggesting transcriptional regulation by indirect
mechanisms. To validate the ChIP-seq results, ChIP-qPCR ana-
lyses were carried out on independent samples. We focused on
HMGCS1, an indispensable enzyme of the MVA pathway
responsible for the generation of farnesyl-pyrophosphate and
geranyl-geranyl-pyrophosphate forms as well as MVA and
cholesterol, which localizes upstream of the remaining genes in
the shared PPI cluster (Fig. S6G). A 9-fold enrichment signal was
observed for the HMGCS1 gene compared to control input
(Fig. 6G). Altogether, these results demonstrate that FOSL1 con-
trols HMGCS1 expression in CCA cells through direct promoter
binding.
Genetic and pharmacological inhibition of FOSL1 targets
impairs CCA growth
The RNA- and ChIP-seq analyses indicated that HMGCS1 is a
downstream FOSL1 target. Supporting these data, human spec-
imens were analysed and HMGCS1 was shown to be highly
expressed in nearly half of all CCA cases (46%). Likewise, AURKA
was also highly expressed in over two-thirds of all cases (70%).
No HMGCS1 or AURKA staining was detected in non-tumorous
biliary ducts (Fig. 7A, Fig. S7A and Table S2). More notably, a
strong association between those CCA samples with high
expression levels of FOSL1 and those ones with high levels of
either HMGCS1 (p <0.001) or AURKA (p <0.001) was found by
Fisher’s exact test. Furthermore, we took advantage of a human
data set that allows direct comparison of CCA to normal biliary
epithelial cells46 and found upregulation of HMGCS1 mRNA in
cancer specimens (Fig. 7B). HMGCS1 downregulation was
observed upon FOSL1 knockdown both in in vitro and in CDX
models (Fig S7B,C). Notably, HMGCS1 was also decreased in
mouse 339 and KPch CCA cell lines when FOSL1 was inhibited
(Fig. S7D). In addition, we found HMGCS1 expression in CCA
lesions of the AKP GEM model, coinciding with tumour areas
where FOSL1 levels were also upregulated (Fig. 7C).

The HMGCS1 expression findings prompted us to assess
HMGCS1 function in CCA. To do this, 2 shRNAs were deployed to
silence HMGCS1 in eCCA and iCCA cell lines (Fig. 7D). Genetic
inhibition of HMGCS1 reduced cell proliferation in human CCA
cell lines compared to control cells (Fig. 7E). Likewise, a decrease
in the number of colonies formed by HMGCS1-depleted cells was
observed (Fig. 7E). Thus, HMGCS1 inhibition partially pheno-
copies FOSL1 loss in CCA.

Next, we followed a pharmacological approach to inhibit
HMGCS1. We deployed inhibitors that target HMGCS1 either
upstream or downstream. First, given that the mTOR pathway
can regulate HMGCS1 expression,47 we used the mTOR inhibitor
(mTORi) AZD8055. In agreement with the published data,
decreased HMGCS1 was seen in all human and mouse CCA cells
treated with AZD8055 (Fig. S7E). Colony forming assays with
various doses of the mTORi showed that a 20 nM dose was
sufficient to reduce the clonogenic efficiency by 60–85% in hu-
man and mouse cell lines (Fig. 7F). Second, we used pitavastatin,
an inhibitor that prevents the production of MVA from HMG-CoA
by targeting HMGCR, an enzyme that functions right down-
stream of HMGCS1 (Fig. S6F). Colony forming assays revealed
that pitavastatin administration in the low micromolar range
021 vol. 75 j 363–376
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HUCCT1) and mouse (339 and KPch) CCA cell lines treated with different doses of mTORi (AZD8055) or AURKAi (Alisertib). Numbers indicate relative percentage
of cells with regard to control condition. All data are mean ± SD. Assays are representative of at least 3 independent experiments. (H) Growth kinetics of sub-
cutaneous tumours from KPch mouse CCA cell lines in sv129 immunocompetent mice treated by oral gavage 5 days/week during 2 weeks with mTORi (20 mg/kg,
n = 6), AURKAi (25 mg/kg, n = 8) or vehicle (n = 8). Data are mean ± SEM (t test). CCA, cholangiocarcinoma; shRNA, short-hairpin RNA.
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(0.5–2.5 lM) also reduces the clonogenic capacity by 50% or
more in human and mouse CCA cell lines (Fig. S7H).

In line with the observed AURKA upregulation in CCA, AURKA
knockdown also decreased cell proliferation and clonogenic
ability (Fig. S7F-G). Furthermore, we observed that pharmaco-
logical inhibition of AURKA, using concentrations ranging from
50 to 250 nM of the AURKAi alisertib, reduced clonogenic ability
between 40 and 90% (Fig. 7G).

Lastly, we studied the effect of pharmacological abrogation of
HMGCS1 and AURKA in vivo. To do this, we first generated sub-
cutaneous tumours from KPch cells in sv129 mice with a
competent immune system. The mTORi was chosen to abrogate
HMGCS1 signalling. Single administration of mTOR and AURKA
inhibitors induced tumour regression compared to control
treatment, although tumour volume decrease was only signifi-
cant upon mTORi treatment, more likely due to sample hetero-
geneity (Fig. 7H). Notably, tumour growth resumed when
treatment was terminated (Fig. S7I), suggesting that sustained
drug administration is necessary to yield anti-tumour responses.
Pharmacological mTOR inhibition did not adversely impact
mouse weight (Fig. S7J).

A second experiment was performed to compare single and
dual treatments, expected to yield superior outcomes.48 How-
ever, the effect of the combined treatment was not superior to
single treatments (Fig. S7K), suggesting that a dual strategy
involving mTORi and AURKAi is not justified in this CCA model.
Discussion
Our study points at FOSL1 as a relevant transcription factor in
CCA with clinical and functional implications. Furthermore, it
unveils targets within the FOSL1 transcriptional network
amenable to pharmacological inhibition (Fig. 8).

At the clinical level, we observe that FOSL1 expression inde-
pendently associates with poor patient outcomes irrespective of
mutational status. Notably, those patients with tumours carrying
KRAS mutations and FOSL1 expression had the worst survival
outcome. A series of follow-up experiments using human and
mouse in vitro and in vivomodels demonstrated that FOSL1 play a
functional role in CCA, providing evidence of its potential
involvement in patient outcome.

This study illustrates the involvement of major effector
pathways participating in CCA, such as the RAF-MEK-ERK or the
CCA development and progression

FOSL1

KRAS
Other

oncogenic stimuli

HMGCS1 AURKA

?

CCA development and progression

KRAS
Other

oncogenic stimuli

?

FOSL1

HMGCS1 AURKA

mTORi

statins

Genetic
inhibition

AURKAi

Fig. 8. Proposed model of FOSL1 regulation and function in CCA. FOSL1
expression favours CCA development and progression via direct and indirect
transcriptional effectors such as HMGCS1 and AURKA. FOSL1 genetic inhibition
or single/dual pharmacological blockade of downstream targets adversely
affect CCA. CCA, cholangiocarcinoma.
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PI3K-AKT pathways,41 in FOSL1 regulation. Although we showed
that FOSL1 expression is controlled by the KRAS oncogene, given
the large percentage of patients with CCA expressing FOSL1, it is
likely that additional oncogenes or extracellular cues derived
from abnormal activation of cancer pathways also participate in
FOSL1 regulation. Supporting this data, recent work in perihilar
CCA showed that the WNT pathway regulates FOSL1 via the
transcription factor TCF7, which played a functional role in this
CCA subtype.26

Our studies shed light on new molecular mechanisms
controlled by FOSL1. In addition to regulating genes implicated in
mitosis progression previously reported in lung and pancreatic
cancer,27 FOSL1 regulates different functions such cholesterol
and steroid biosynthesis or mitochondrial electron transport and
ATP synthesis in CCA. Lipid metabolism-related processes were
characterized by a subset of genes composed of HMGCS1, ELOVL1,
IDI1, INSIG1, MSMO1 and SCD, some of which are direct FOSL1
targets. Liver cancer cells undergo drastic metabolic re-
programming to meet their increased demand for energy and
macromolecules,49 and increased cholesterol synthesis through
the MVA pathway may be part of such adaptative mechanisms.50

The MVA pathway does not only lead to the production of
cholesterol, but also results in important non-sterol end products
including farnesyl and geranylgeranyl isoprenoids, which can be
important post-translational modulators of oncogenic effectors
in CCA such as KRAS or RAC1.51,52 The fact that HMGCS1 is
necessary for proliferation of CCA cells supports the idea that the
MVA pathway fuels the oncogenic phenotype. Notably, HMGCS1
has been reported to be a ‘synthetic lethal’ partner of BRAFV600E

in human melanoma and colon cancer cells (53). Moreover, in an
attempt to unveil novel sensitizers that could be combined to
maximize anti-cancer efficacy of statins, HMGCS1 was identified
as a top scoring gene of a genome-wide RNAi analysis required
for cell survival in lung cancer cells.54 Despite our current ob-
servations, the contribution of other members of the FOSL1
signature remains unexplored and may also explain the impact
of FOSL1 inhibition in KRAS-mutated CCA.

Different targeted therapies have been tested with limited
success in CCA. Some of them include inhibition of effectors of
the RAF-MEK-ERK and PI3K-AKT pathways. Given the mounting
evidence from our group and others on the role of FOSL1 in
cancer, including CCA,27,32 considering FOSL1 as a therapeutic
target would be justified. However, based on FOSL1 regulation
experiments in vitro, inhibitors against the RAF-MEK-ERK or the
PI3K-AKT modules are expected to decrease expression levels of
the transcription factor and, thus, one would anticipate that
targeting FOSL1 is a meaningless endeavour as inhibitors against
upstream kinases are already available. However, the fact that
FOSL1 expression levels are absent or barely detectable in
normal liver tissues suggests that FOSL1 inhibitors may have a
better therapeutic window (i.e. less toxicity) compared to MEK or
PI3K inhibitors. Although transcription factors have been his-
torically difficult to target, in part because their activity is ignited
by protein-protein or protein-DNA interactions, inhibition of
key transcription factors such as c-MYC, long-thought to be
undruggable, has recently been demonstrated55,56 providing
groundwork to attempt FOSL1 inhibition.

As alternative strategies of FOSL1 inhibition, our observations
suggest that disruption of the HMGCS1 and AURKA networks
represent potential options to treat CCA. These results are in tune
with previous studies proposing statins57,58 or AURKAi59 as
021 vol. 75 j 363–376 373
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potential therapeutic approaches for CCA. Furthermore, recent
data has shown that statins reduce the risk of eCCA and may
improve survival in patients with distal CCA,60 highlighting the
clinical relevance of statin treatment. Lastly, our study goes one
step further by nominating mTOR inhibition as a potential
therapy for CCA.
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