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A meta-analysis of pre-pregnancy maternal body
mass index and placental DNA methylation
identifies 27 CpG sites with implications for
mother-child health
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Higher maternal pre-pregnancy body mass index (ppBMI) is associated with increased

neonatal morbidity, as well as with pregnancy complications and metabolic outcomes in

offspring later in life. The placenta is a key organ in fetal development and has been proposed

to act as a mediator between the mother and different health outcomes in children. The

overall aim of the present work is to investigate the association of ppBMI with epigenome-

wide placental DNA methylation (DNAm) in 10 studies from the PACE consortium,

amounting to 2631 mother-child pairs. We identify 27 CpG sites at which we observe pla-

cental DNAm variations of up to 2.0% per 10 ppBMI-unit. The CpGs that are differentially

methylated in placenta do not overlap with CpGs identified in previous studies in cord blood

DNAm related to ppBMI. Many of the identified CpGs are located in open sea regions, are

often close to obesity-related genes such as GPX1 and LGR4 and altogether, are enriched in

cancer and oxidative stress pathways. Our findings suggest that placental DNAm could be

one of the mechanisms by which maternal obesity is associated with metabolic health out-

comes in newborns and children, although further studies will be needed in order to corro-

borate these findings.

https://doi.org/10.1038/s42003-022-04267-y OPEN

A full list of author affiliations appears at the end of the paper.

COMMUNICATIONS BIOLOGY |          (2022) 5:1313 | https://doi.org/10.1038/s42003-022-04267-y | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04267-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04267-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04267-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04267-y&domain=pdf
http://orcid.org/0000-0001-6307-0880
http://orcid.org/0000-0001-6307-0880
http://orcid.org/0000-0001-6307-0880
http://orcid.org/0000-0001-6307-0880
http://orcid.org/0000-0001-6307-0880
http://orcid.org/0000-0001-8907-197X
http://orcid.org/0000-0001-8907-197X
http://orcid.org/0000-0001-8907-197X
http://orcid.org/0000-0001-8907-197X
http://orcid.org/0000-0001-8907-197X
http://orcid.org/0000-0001-6744-6750
http://orcid.org/0000-0001-6744-6750
http://orcid.org/0000-0001-6744-6750
http://orcid.org/0000-0001-6744-6750
http://orcid.org/0000-0001-6744-6750
http://orcid.org/0000-0002-5186-0735
http://orcid.org/0000-0002-5186-0735
http://orcid.org/0000-0002-5186-0735
http://orcid.org/0000-0002-5186-0735
http://orcid.org/0000-0002-5186-0735
http://orcid.org/0000-0002-9605-6337
http://orcid.org/0000-0002-9605-6337
http://orcid.org/0000-0002-9605-6337
http://orcid.org/0000-0002-9605-6337
http://orcid.org/0000-0002-9605-6337
http://orcid.org/0000-0002-5405-9994
http://orcid.org/0000-0002-5405-9994
http://orcid.org/0000-0002-5405-9994
http://orcid.org/0000-0002-5405-9994
http://orcid.org/0000-0002-5405-9994
http://orcid.org/0000-0003-2732-4550
http://orcid.org/0000-0003-2732-4550
http://orcid.org/0000-0003-2732-4550
http://orcid.org/0000-0003-2732-4550
http://orcid.org/0000-0003-2732-4550
http://orcid.org/0000-0003-1241-6073
http://orcid.org/0000-0003-1241-6073
http://orcid.org/0000-0003-1241-6073
http://orcid.org/0000-0003-1241-6073
http://orcid.org/0000-0003-1241-6073
http://orcid.org/0000-0002-6173-7255
http://orcid.org/0000-0002-6173-7255
http://orcid.org/0000-0002-6173-7255
http://orcid.org/0000-0002-6173-7255
http://orcid.org/0000-0002-6173-7255
http://orcid.org/0000-0002-3480-2031
http://orcid.org/0000-0002-3480-2031
http://orcid.org/0000-0002-3480-2031
http://orcid.org/0000-0002-3480-2031
http://orcid.org/0000-0002-3480-2031
http://orcid.org/0000-0002-2683-0817
http://orcid.org/0000-0002-2683-0817
http://orcid.org/0000-0002-2683-0817
http://orcid.org/0000-0002-2683-0817
http://orcid.org/0000-0002-2683-0817
http://orcid.org/0000-0001-7381-904X
http://orcid.org/0000-0001-7381-904X
http://orcid.org/0000-0001-7381-904X
http://orcid.org/0000-0001-7381-904X
http://orcid.org/0000-0001-7381-904X
http://orcid.org/0000-0001-6417-8914
http://orcid.org/0000-0001-6417-8914
http://orcid.org/0000-0001-6417-8914
http://orcid.org/0000-0001-6417-8914
http://orcid.org/0000-0001-6417-8914
http://orcid.org/0000-0001-6537-1468
http://orcid.org/0000-0001-6537-1468
http://orcid.org/0000-0001-6537-1468
http://orcid.org/0000-0001-6537-1468
http://orcid.org/0000-0001-6537-1468
http://orcid.org/0000-0003-1582-2747
http://orcid.org/0000-0003-1582-2747
http://orcid.org/0000-0003-1582-2747
http://orcid.org/0000-0003-1582-2747
http://orcid.org/0000-0003-1582-2747
http://orcid.org/0000-0002-8102-9811
http://orcid.org/0000-0002-8102-9811
http://orcid.org/0000-0002-8102-9811
http://orcid.org/0000-0002-8102-9811
http://orcid.org/0000-0002-8102-9811
http://orcid.org/0000-0003-0825-9124
http://orcid.org/0000-0003-0825-9124
http://orcid.org/0000-0003-0825-9124
http://orcid.org/0000-0003-0825-9124
http://orcid.org/0000-0003-0825-9124
http://orcid.org/0000-0002-7090-1758
http://orcid.org/0000-0002-7090-1758
http://orcid.org/0000-0002-7090-1758
http://orcid.org/0000-0002-7090-1758
http://orcid.org/0000-0002-7090-1758
http://orcid.org/0000-0003-4566-150X
http://orcid.org/0000-0003-4566-150X
http://orcid.org/0000-0003-4566-150X
http://orcid.org/0000-0003-4566-150X
http://orcid.org/0000-0003-4566-150X
http://orcid.org/0000-0002-6398-7362
http://orcid.org/0000-0002-6398-7362
http://orcid.org/0000-0002-6398-7362
http://orcid.org/0000-0002-6398-7362
http://orcid.org/0000-0002-6398-7362
http://orcid.org/0000-0002-1565-1629
http://orcid.org/0000-0002-1565-1629
http://orcid.org/0000-0002-1565-1629
http://orcid.org/0000-0002-1565-1629
http://orcid.org/0000-0002-1565-1629
http://orcid.org/0000-0003-0127-2860
http://orcid.org/0000-0003-0127-2860
http://orcid.org/0000-0003-0127-2860
http://orcid.org/0000-0003-0127-2860
http://orcid.org/0000-0003-0127-2860
http://orcid.org/0000-0001-7752-2585
http://orcid.org/0000-0001-7752-2585
http://orcid.org/0000-0001-7752-2585
http://orcid.org/0000-0001-7752-2585
http://orcid.org/0000-0001-7752-2585
http://orcid.org/0000-0002-3176-501X
http://orcid.org/0000-0002-3176-501X
http://orcid.org/0000-0002-3176-501X
http://orcid.org/0000-0002-3176-501X
http://orcid.org/0000-0002-3176-501X
www.nature.com/commsbio
www.nature.com/commsbio


H igher maternal pre-pregnancy body mass index (ppBMI)
is associated with aberrant fetal growth1, macrosomia and
increased neonatal morbidity and mortality2, and also

with pregnancy complications such as pre-eclampsia, gestational
diabetes, gestational hypertension, pre-term delivery and cesarean
section3. It has been shown that maternal adipokine and insulin
signaling in the placenta could contribute to regulate both the
vascular development of this organ and the nutrient transport to
the fetus, and therefore impact fetal development3. Additionally,
it has also been observed that maternal ppBMI is associated with
other offspring health outcomes in later life, including increased
risk for obesity in children4. Observational studies have suggested
links between maternal obesity and long-term risk of coronary
heart disease, stroke, type 2 diabetes and asthma in offspring5.
Very high maternal ppBMI has also been associated with poorer
cognitive performance in children and greater risk of neurode-
velopmental disorders6, while there is also preliminary evidence
in favor of potential implications in immune and infectious
disease-related outcomes3. These associations could be mediated
by epigenetic changes, including DNA methylation (DNAm), but
the implication of an early epigenetic reprogramming in utero
deserves further research7.

A previous study carried out within the Pregnancy and
Childhood Epigenetics (PACE) consortium8 has shown that
maternal ppBMI is widely associated with differences in cord
blood DNAm in the newborn9. However, the authors observed
that many of the significant epigenetic effects were modest (<0.2%
methylation per BMI unit) and they did not detect enrichment for
any particular biological pathway, leaving open questions
regarding potential intra-uterine mechanisms that could be
affecting the epigenetic profile of the newborn9. In this context,
while the epigenetic alterations in cord and peripheral blood have
been thoroughly investigated9,10, the potential impact of maternal
ppBMI in placental DNAm remains poorly explored. As far as we
know, the most recent studies have performed methylation pro-
filing with methylation arrays or reduced representation bisulfite
sequencing in up to 300 term placentas of obese and non-obese
mothers11,12. Although interesting, these studies have yielded a
limited number of significant results, probably because of their
relatively small sample size.

A recently published meta-analysis with 1700 placental sam-
ples by the PACE consortium13 has discovered a placental
DNAm signature of maternal smoking during pregnancy that is
quite different from what has been observed in cord blood14.
Differentially methylated CpGs related to smoking in pregnancy
fall within active regions of the placental epigenome, and nearby
genes are involved in the response to environmental stressors,
regulation of inflammatory activity, and growth factor signaling.
The placenta is a transient organ at the maternal-fetal interface,
with endocrine and substrate-transport functions, that is sensi-
tive to pregnancy environmental influences – exogenous or
endogenous. Maternal pre-pregnancy obesity is often char-
acterized by an adverse metabolic milieu that may alter placental
function by increasing oxidative stress, vascular endothelium
thickening, and inflammatory lesions in placental tissues11.
Altogether, these facts encourage the investigation of the pla-
centa as a putative mediator of maternal obesity and health
outcomes in the offspring, specifically through the modification
of the placental DNAm landscape.

In this context, the overall aim of the current analyses was to
investigate the association of maternal ppBMI with epigenome-
wide placental DNAm in 10 studies from the PACE consortium
amounting to 2631 mother-child pairs. We also conducted
functional enrichment analyses and comparison of our results
with maternal ppBMI-associated cord blood DNAm alterations
previously reported by PACE.

Results
Study population. Eleven North-American, Australian, and
European studies (N= 2631) contributed to the epigenome-wide
association study (EWAS) to determine the associations of
maternal ppBMI with placental DNAm (Table 1), including
Asking Questions about Alcohol in pregnancy (AQUA),15 Early
Autism Risk Longitudinal Investigation (EARLI)16, Study on the
pre- and early postnatal determinants of child health and devel-
opment (EDEN)17, Genetics of Glucose regulation in Gestation
and Growth (Gen3G)18, Genetics, Early Life Environmental
Exposures and Infant Development in Andalusia (GENEIDA)19,
Harvard Epigenetic Birth cohort (HEBC)20, Environment and
Childhood Project (INMA)21, The Intrauterine Sampling in Early
Pregnancy Study (ITU)22, Markers of Autism Risk in Babies-
Learning Early Signs (MARBLES)23, New Hampshire Birth
Cohort Study (NHBCS)24, and Rhode Island Child Health Study
(RICHS)25. MARBLES was excluded at a later stage as the sample
size was too small and results were inconsistent with the other
cohorts (Supplementary Fig. 1).

Maternal ppBMI (kg/m2) was generally self-reported. In those
cases where ppBMI was not available, BMI in early pregnancy
(1st trimester) was used. For simplicity, we will refer to both of
them as maternal ppBMI. In all the analyses performed, we used
ppBMI as a continuous variable. The cohort-specific average
maternal ppBMI ranged from 22.9 in EDEN (France) to 27.6 in
EARLI (USA) (standard deviation-SD= 1.60). In general, 548
(20.8%) and 369 (14.0%) mothers reported overweight (>25 BMI)
and obesity (>30 BMI), respectively, while 115 (4.37%) appeared
to be underweight (<18.5 BMI). Mean age of the mothers was
30.7 years (SD= 2.9). The distributions of other covariates by
cohort are provided in Supplementary Data 1.

Genome-wide DNAm meta-analyses. Each cohort analyst con-
ducted two different EWAS, modeling DNAm beta-values at a
maximum number of 419,460 CpG sites in relation to maternal
ppBMI using robust linear regressions, with and without
adjustment for putative cellular components. Cell composition
was estimated using the reference-free deconvolution algorithm
RefFreeCellMix26. The CpGs included in the analyses were
among those shared by the two most common Illumina Infinium
Beadchip arrays, 450 K and EPIC, since both arrays were used to
assess the DNAm levels of the samples, as shown in Table 1. All
models were adjusted for maternal age, parity, maternal educa-
tion and maternal smoking. Genomic inflation factors from the
cohort-specific models (ranging from λ= 0.692 to 1.472) and a
summary of the results can be seen in Supplementary Data 2.
Finally, after quality control of the results, we conducted an
inverse variance-weighted fixed-effects meta-analysis using the
software GWAMA27. The inflation factors from the meta-
analyses (λ= 1.230 and 1.220 for the cell type-adjusted and

Table 1 Effective sample size of the participating cohorts.

Cohort Country N Array

AQUA Australia 95 450 K
EARLI USA 54 450 K
EDEN France 664 450 K
HBEC USA 186 450 K
Gen3G Canada 448 EPIC
GENEIDA Spain 103 450 K
INMA Spain 168 450 K
ITU Finland 352 EPIC
NHBCS USA 311 450 K
RICHS USA 250 450 K
TOTAL 2631
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-unadjusted models, respectively) (Fig. 1) revealed potential
residual confounding and moderate inflation of test statistics.

After applying the Bonferroni correction for multiple-testing
(meta-analysis nominal p value <1.2e-07), we obtained 27 and 42
CpGs at which maternal ppBMI was significantly associated with
placental DNAm in the models adjusted and unadjusted for cell
type proportions, respectively. Full results for both models are
provided in Supplementary Data 3 and 4, respectively. Higher
maternal ppBMI was associated with lower placental DNAm in
24/27 differentially methylated CpGs identified in the cell type-
adjusted model, while in the unadjusted model, 33/42 hits showed
positive associations (higher maternal ppBMI associated with
increased placental DNAm at the identified CpGs). However,
beta-coefficients of CpGs that were differentially methylated in
one model were positively correlated to the beta-coefficients of
the same position in the other (Supplementary Fig. 2). Finally, the
heterogeneity of associations across cohorts was lower for the
model adjusted for cell type proportions compared to the
unadjusted model (26/27 vs. 34/42 CpGs presented Cochran’s
Q-test p-values > 0.01) and thus, we continued with the results
from the fully adjusted model for all downstream analyses.

Among the 27 differentially methylated CpGs identified in our
cell type-adjusted EWAS (Table 2, Fig. 2A, B), a few individual
CpGs are worthy of mention. The most notable association was
observed at cg08219219, located in the eighth exon of EPHX3,
with the lowest p-value in the meta-analysis (Bonferroni-
corrected, meta-analysis p-value = 2.12e-05) and a beta-
coefficient of −1.12e-03, meaning that a 10-unit difference in
maternal ppBMI is associated with a 1.1% lower DNAm at this
specific CpG site. This association was consistent across all
cohorts (Cochran’s Q-test p-value = 0.12) (Fig. 3a). The largest
beta-coefficient was observed in cg14704941, in the first intron of
CSRP3, with a positive beta-coefficient of 1.96e-03, corresponding
to a 2% higher placental DNAm per 10-unit ppBMI (Bonferroni-
corrected p-value = 2.24e-04 and Cochran’s Q-test p-value =
0.09) (Fig. 3b). In turn, the largest negative beta-coefficient was
found in cg04724807 (more than 57 Kb upstream of SYT16) with
1.8% lower DNAm per 10-unit ppBMI (Bonferroni-corrected p-
value = 3.83e-04 and Cochran’s Q-test p-value = 0.097) (Fig. 3c).
The following CpGs reached the Bonferroni significance thresh-
old and were not identified as highly heterogeneous across
cohorts: cg00423969 and cg14163484, 1.5 kb upstream of the
FER1L5 promoter, as well as cg26433445, cg15933729 and

cg08539067, close to CMIP, LGR4 and GPX1, respectively
(Fig. 3d–h). The remaining Bonferroni-significant hits and their
heterogeneity across cohorts are shown in Supplementary Fig. 3.

Gene-set and regulatory enrichment analyses. To gain insight
into the biological processes that may be captured by placental
DNAm associated with maternal ppBMI, we performed gene-set
and regulatory enrichment analyses. To this end, first, we anno-
tated CpGs to genes and regulatory elements as explained in the
Material and Methods section. Then, we conducted gene-set
enrichments for the 26 unique genes annotated to the 27 maternal
ppBMI-sensitive CpGs with ConsensusPathDB28 using KEGG,
Reactome, Wikipathways and Biocarta reference databases. Two
gene-set pathways were significantly enriched (q value < 0.05),
namely small cell lung cancer and oxidative stress-induced sig-
naling pathway (Supplementary Data 5). This was also true when
we reduced the background from default to only the genes that
are represented in the Illumina 450 K array (~21,231). We also
tested whether the genes annotated to maternal ppBMI-
associated CpGs were enriched for regulatory regions of specific
transcription factors (TFs). Most notably, our ppBMI-associated
CpGs were enriched for genes regulated by ZNF217 (adjusted p
value = 0.02).

We then examined whether the 27 maternal ppBMI-associated
CpGs were enriched for CpG island locations, placenta-specific
imprinting regions or parent-of-origin-specific germline differen-
tially methylated regions29, regulatory features from the placenta-
specific 15-chromatin state annotations from ROADMAP30,31, or
placenta-specific partially methylated domains32 that contain
placenta-specific repressed genes. We did not find any significant
enrichment except for CpG island location and features: the
maternal ppBMI-associated CpGs were depleted in CpG islands
(χ2 = −2.927, p value = 8.4e-04) and highly enriched in open sea
regions (χ2 = 2.742, p value = 1.3e-03) (Supplementary Fig. 4).

Proximity to genetic variants relevant for birth outcomes. We
wanted to determine whether the maternal ppBMI-associated
CpGs that we identified here were localized near genetic variants
that have been associated with birth outcomes in previously
published genome-wide association studies (GWAS). Thus, we
investigated whether ppBMI-associated CpGs were within ±
0.5 Mb (1Mb window) of single nucleotide polymorphisms
(SNPs) that have been associated with birth weight (BW,

Fig. 1 QQ-plots of the meta-analyses of the association between maternal ppBMI and placental DNAm. Analyses were carried out a adjusting for
putative cellular heterogeneity or b without adjusting for putative cellular heterogeneity (N= 2631 placental DNA samples). The red line represents the
normal distribution and 95% confidence interval (gray shading).
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N= 310), birth length (N= 5), head circumference (N= 3),
gestational age (GA, N= 6) and BW+GA (N= 6)33–38. Of the
total 330 birth outcome SNPs in autosomal chromosomes, 10
BW-associated SNPs were within 0.5 Mb of CpGs that were
associated with maternal ppBMI. Therefore, more than a third of
the 27 ppBMI-associated CpG sites were within 0.5 Mb of BW
SNPs, including cg00423969 and cg14163484 (FER1L5),
cg00510149 (IRAG1), cg02286857 (TTC7A), cg15258080 (HK1),
cg22673972 (SLC6A6) and cg24893073 (KDM6B) (Supplemen-
tary Data 6).

Comparison with maternal ppBMI-associated CpGs in cord
blood DNAm. We assessed whether the DNAm signatures of
maternal ppBMI in the placenta were consistent with associations
in cord blood previously reported by the PACE consortium9. We
did not find any overlapping CpGs associated with maternal
ppBMI between the two tissues. However, we reported three
maternal ppBMI-associated CpGs in the placenta that were less
than 0.5Mb upstream or downstream from CpGs that had been
associated with maternal ppBMI in cord blood: two out of the 3 loci
identified showed consistent effect directions of the association
with maternal ppBMI in both tissues (Supplementary Data 7).

Discussion
As far as we know, this is the largest EWAS meta-analysis con-
ducted to date on placental DNAm. We have analyzed a total of
2631 mother-child pairs from 10 different PACE cohorts from
Europe, America and Australia. We have identified 27 CpGs
associated to maternal ppBMI, some of which showed up to 2%
lower DNAm per 10-unit higher BMI. Although such a difference
in BMI is unlikely in an individual woman in the context of pre-
pregnancy interventions, we consider that it could represent the
difference between women in the normal range of BMI and
women with BMI in the obesity category.

The most significant association was observed for cg08219219,
located in the eighth exon of EPHX3, for which a ppBMI difference
of 10 units is associated with a 1.1% lower placental DNAm. It has
been shown that soluble epoxide hydrolases such as EPHX3 have
higher activity in obese mice39. Additionally, it has been suggested
that this family of hydrolases could act as therapeutic targets for
metabolic and cardiovascular abnormalities related to obesity40.
We highlighted two other significant hits showing the largest
positive and negative beta-coefficients. cg14704941, in the first
intron of CSRP3, presented with 2% higher placental DNAm per
10-unit ppBMI. CRSP3 knockout mice develop dilated cardio-
myopathy with hypertrophy and heart failure after birth41. The
beta-coefficient of cg04724807, located upstream of SYT16, repre-
sented about 1.8% lower placental DNAm per 10-unit greater
ppBMI. SYT16 is over-expressed in pancreatic islet cells upon high
glucose challenge and is thought to play a role in insulin
secretion42. As previously stated, maternal obesity has been
described to be associated with obesity, diabetes and cardiometa-
bolic conditions in offspring later in life4,5. The fact that our EWAS
identified CpGs near these metabolically relevant genes highlights
the plausibility that they may play a role in the link between
maternal obesity and future health outcomes in children.

Among our significant signals, we also found two CpG sites,
cg00423969 and cg14163484, 1.5 kb upstream of the FER1L5
promoter, presenting lower placental DNAm levels associated
with higher maternal ppBMI. Remarkably, FER1L5 encodes a
dysferlin- and myoferlin-related protein, which has been pre-
dicted to have a role in vesicle trafficking and muscle membrane
fusion events43. Both vesicle trafficking and membrane fusion are
crucial events in placental development, since they allow the
formation of the syncytiotrophoblast, an uninterrupted andT
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multi-nucleated mass that covers the placental villi and enables
the interplay with the mother44. In addition, CMIP and GPX1,
two of the genes annotated to maternal ppBMI-associated CpGs,
may present relevant biological roles in pregnancy. For example,
different CpGs surrounding CMIP have been associated with pre-
eclampsia in a placental DNAm study45. GPX1 is an antioxidant
gene and its mRNA levels are lower in the placenta of obese
mothers compared to normal-weight mothers46. Finally, in the
context of obesity, LGR4, another gene identified in the present
study, bears an activating variant that contributes to abdominal
visceral fat accumulation and therefore, to central obesity47,
suggesting that both genetic and epigenetic regulation at this
locus may have a role in obesity-related phenotypes.

Regarding enrichment analyses, one of the most interesting
findings is that several significant CpGs are located close to
cancer-related genes. It has been recently described that the
placenta is organized as a big mass of tumoral clones, with rapid
cell divisions that enable selection for good cells that will even-
tually form the baby. Additionally, cancer and the

syncytiotrophoblast of the placenta are both invasive tissues with
many biological parallelisms48,49. Indeed, it is not surprising that
factors that are relevant to the placenta, such as maternal obesity,
could affect genes that are relevant to cancer. The other pathway
that was enriched for altered genes is oxidative stress. It is well
known that excessive fat mass accumulation is linked to oxidative
stress. Moreover, peroxisomal fatty acid oxidation seems to be
enhanced in the placenta of obese women, while mitochondrial
activity is impaired, with a greater lipid storage and an altered
transfer of lipids to the fetus50. Altogether, there is growing evi-
dence suggesting that obesity-induced oxidative stress is a central
factor involved in the risk for adverse outcomes in pregnancy51,52.

Another interesting finding that deserves further investigation
is the observation that differentially methylated CpGs are enri-
ched for ZNF217 binding sites. This TF is epigenetically altered in
placental cells under hypoxia53, and it has been suggested that
maternal obesity during pregnancy causes placental hypoxia54.
However, whether this TF can drive the methylation machinery
to selected regions of the genome and cause epigenetic changes

Fig. 2 Association between maternal ppBMI and placental DNAm (N= 2631 placental DNA samples), after adjusting for maternal age, parity,
maternal education, maternal smoking and putative cellular heterogeneity. Association results are displayed as a volcano plot, where the X-axis shows
the effect sizes (ranging between 0 and 1) in DNAm and b Manhattan plot, where the X-axis represents the genomic location of each CpG. In both panels
blue dots indicate significantly associated CpGs (meta-analysis p-value < 1.2e-07).
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has not yet been explored. Similarly, the overlap between our
CpGs and BW-associated regions suggests that both fetal genetic
and placental epigenetic factors may contribute to the regulation
of fetal growth, but this requires further research.

Our study has notable strengths but also several limitations. As
previously mentioned, we have been able to coordinate a large
number of cohorts and thus, to obtain an important sample size.
Additionally, we have the experience of previous works, in which
robust pipelines had already been implemented for EWAS, and
we have run the quality control and meta-analysis in two inde-
pendent institutions. Finally, none of the maternal ppBMI-
associated CpGs from the current study are among the proble-
matic probes with absolute methylation differences greater than
10% between Illumina 450 K and EPIC arrays that we identified
in a previous study55.

Regarding limitations, we did not have access to individual data
addressing whether each ppBMI measurement was self-reported
or taken at the end of the first trimester of pregnancy. Therefore,
we cannot use this variable as a covariate nor compare between
measurement types. We are very aware that self-reported ppBMI
may not be the most accurate measurement for our variable of
interest, as may also be the case of the measurement of BMI at the
end of the first trimester. However, self-reporting of ppBMI has
been shown to be reliable and highly correlated to measured BMI
at 12 weeks of gestation (r= 0.96; p-value <0.0001)56. Second, the
unavailability of genotype data in some of the participating
cohorts did not allow to add genotype principal components to
our models and there might be residual confounding by popu-
lation structure that we did not account for. Third, most of the

cohorts were composed by a majority of individuals from Eur-
opean descent, which limits generalizability of our findings to
other populations.

On the other hand, we are aware that RefFreeCellMix, the R
package employed for adjustment of cell mixtures, is a principal
component analysis-type correction method, and therefore pre-
sents the risk of over-correcting the results, especially in dense
signal scenarios like the Illumina Beadchips, due to the capture of
the signal by some of the top components of the estimation57.
This, together with the fact that Bonferroni-correction is very
strict and that our approach does not take into account the
correlation between nearby CpGs, may have let some discoveries
out of the focus. However, we have preferred to be strict and
report only the most robust results.

In summary, here we present the largest EWAS of maternal
ppBMI in association with placental DNAm performed to date.
We identify 27 CpG sites at which we observe placental DNAm
variations of 0.5–2.0% by 10-unit maternal ppBMI difference.
Additionally, our DNAm findings seem to be placenta-specific,
showing minimal overlap with a previous meta-analysis in cord-
blood DNAm in relation to maternal ppBMI. The differentially
methylated CpGs are mainly located in open sea regions, with a
complete depletion from CpG islands, and enriched in cancer and
oxidative stress- related pathways. These observations, together
with the fact that maternal ppBMI is associated with placental
DNAm at CpGs located close to obesity-related genes, leads us to
hypothesize that placental DNAm could be one of the mechan-
isms by which maternal obesity is associated with aberrant fetal
growth and maybe, other metabolic health outcomes in offspring
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Fig. 3 Forest plots of the leave-one-out analysis showing the fixed effects meta-analysis estimates of association between maternal ppBMI and
placental DNAm. Association of a cg08219219, b cg14704941, c cg04724807, d cg00423969, e cg14163484, f cg26433445, g cg15933729, h and
cg08539067 with maternal ppBMI. In all panels, cohort names indicate the cohort excluded in each row, and error bars represent the 95% confidence
interval of the effect size. Numerical source data for the figure are available in file Supplementary Data 9.
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later in life. However, we cannot rule out that the changes
observed could be markers of exposure to high ppBMI and
therefore, our findings will need to be supplemented by functional
studies or causal inference analyses to better understand if they
truly have a role in pregnancy complications or long-term
metabolic outcomes.

Methods
Participating cohorts. Cohorts that are members of the PACE consortium, had
existing DNAm data from placental tissue obtained with the Illumina 450 K or
EPIC BeadChips, and had maternal BMI information prior to the beginning of
pregnancy were invited to participate in the present study. The ten cohorts that
contributed to the meta-analysis were AQUA, EARLI, EDEN, Gen3G, GENEIDA,
HEBC, INMA, ITU, NHBCS and RICHS. All cohorts obtained ethics approval and
informed consent from participants prior to data collection through their Insti-
tutional Ethics Boards. Exclusion criteria for this study were: non-singleton births,
pre-eclampsia, and DNAm data not derived from the fetal facing side of the
placenta. All participants included in this meta-analysis were of European ancestry.
Detailed methods for each cohort are provided in Supplementary Note 1.

DNAm data quality control and normalization. All DNAm data processing and
analyses were conducted in R 3.3.258, with the exception of the meta-analyses,
which were performed with the GWAMA software (https://genomics.ut.ee/en/
tools/gwama)27. DNAm from the fetal-facing side of the placenta was assessed with
the Illumina 450 K or EPIC arrays. See Supplementary Note 1 for extra details on
placenta collection, DNA extraction and DNAm acquisition in each cohort. In
general, samples were randomized across the different arrays to avoid group dif-
ferences derived from batch effects. Quality control of DNAm was standardized
across all cohorts. Low-quality samples (showing a shifted beta-value distribution)
were filtered out and probes with detection p-values >0.01 were excluded (for
cohort-specific probe lists see Supplementary Data 8). DNAm beta-values were
normalized with functional normalization59 and beta-mixture quantile normal-
ization (BMIQ)60 was applied to correct for probe type bias. Cohorts examined
their data for batch effects by depicting box-plots that divided the samples into
different groups according to suspicious variables, and applied ComBat when
applicable; all but one cohort (GENEIDA) identified batch effects and used
ComBat to remove this source of variation. Probes that were exclusive for the EPIC
array, hybridized to the X/Y chromosomes, cross-hybridizing probes and probes
with SNPs at the CpG site, extension site, or within 10 bp of the extension site with
an average minor allele frequency > 0.01 were filtered out61. Overall, 419,460
probes were available in the ten participating cohorts to assess placental DNAm.
Methylation beta-values were modeled in robust linear regressions considering
maternal ppBMI as a continuous variable. Finally, DNAm extreme outliers (<25th
percentile - 3*IQR or >75th percentile + 3*IQR across all the samples) were
trimmed.

Estimates of putative cellular heterogeneity. Putative cellular heterogeneity was
estimated from DNAm data using a reference-free cell-mixture deconvolution
method (RefFreeCellMix)26. The number of components varied between cohorts
and ranged from 2 to 6, maybe because different sampling protocols result in
differential heterogeneity across cohorts, or since the approach is data driven, those
components could be capturing other major sources of variation in the array data,
such as residual technical artifacts. Models for differential DNAm were corrected
for the number of surrogate variables minus one to reduce multi-collinearity.

Genome-wide differential DNAm analyses. Within each cohort, robust linear
regression from the MASS package62 in R was run to account for potential het-
eroskedasticity and to test the associations between normalized placental DNAm
beta-values at each CpG and maternal ppBMI. Models were adjusted for maternal
age, parity, maternal education and maternal smoking during pregnancy. Cohorts
ran models both with and without adjustment for RefFreeCellMix cell type pro-
portions. Covariate data are described in more detail in Supplementary Note 1.

Meta-analyses. We performed inverse variance-weighted fixed effects meta-
analyses using GWAMA27. The meta-analysis was performed independently by
two groups to ensure consistent results and identical results were reproduced. We
used the Bonferroni adjustment to correct for multiple testing. Secondary analyses
were only performed on CpGs that passed the Bonferroni correction, particularly
in the RefFreeCellMix-adjusted model. It is worth mentioning that both the meta-
analysis and shadow meta-analysis teams performed a general quality control
separately prior to the meta-analysis itself, showing consistent results. In summary,
we checked that conflictive probes had been removed and drew the cohort-specific
qq-plots, as well as the correlation between sample sizes and significant hits across
cohorts. Finally, we checked the genomic inflation of the whole meta-analysis and
plotted forest plots of the significant hits after leaving one cohort out at a time, to
see whether any of the cohorts was guiding the associations. The MARBLES cohort

was excluded due to its small sample size and to the fact that forest plots showed
inconsistencies compared to the rest of the cohorts (Supplementary Fig. 1).

Functional and regulatory enrichment analyses. We annotated CpGs to their
closest genes and to CpG islands with annotations from the Illumina Human
Methylation 450 K annotation file, and with several regulatory features using publicly
available data: placental 15-chromatin states30 released from the ROADMAP Epi-
genomics Mapping Consortium31 (ChromHMM v1.10), placental germline differ-
entially methylated regions29 and placental partially methylated domains32.

Over-representation analyses for gene-sets or pathways were performed at the
gene level with ConsensusPathDB28 using KEGG, Reactome, Wikipathways and
Biocarta as reference databases. ConsensusPathDB performs a hypergeometric test,
with a default background equal to the number of ConsensusPathDB entities that
are annotated with an ID of the type the user has provided, and participate in at
least one pathway. Finally, the program corrects multiple-testing with FDR.
Enrichment for TFs was assessed at the gene level with EnrichR using ENCODE
and ChEA consensus TFs from ChIP-X database. EnrichR results were ranked
using the combined score (p-value computed using Fisher’s exact test combined
with the z-score of the deviation from the expected rank)63.

Overlap of ppBMI-sensitive CpG sites and birth outcome SNPs. We assessed
the genomic proximity between CpGs identified by our maternal ppBMI placental
DNAm EWAS (Bonferroni significant in the cell-type adjusted model) and SNPs
previously associated with BW, birth length, head circumference and GA30–35.
Briefly, we verified the genomic proximity between SNPs from the largest GWAS
performed to date on the above-mentioned birth outcomes and our identified
CpGs by using the Genomic Ranges package64 in R, within 1 Mb windows
(±0.5 Mb) surrounding each of the 367 autosomal SNPs.

Comparison of ppBMI-associated CpGs in placenta and in cord blood. We
examined whether maternal ppBMI-associated CpGs in placenta were the same as
those previously reported in cord blood9. As no overlap was found between the hits
that passed the Bonferroni correction in each study, we searched for CpGs from the
cord blood study present 0.5 Mb upstream or downstream of each of the maternal
ppBMI-associated CpGs in placenta (1 Mb windows), by using the GenomicRanges
R package, with the aim of finding genomic regions where DNAm was related to
ppBMI in the two different tissues.

Statistics and reproducibility. DNAm data from up to 419,460 CpG obtained
with the Illumina 450 K or EPIC BeadChips in 2631 placental samples of the fetal
side were normalized with functional normalization and BMIQ, and corrected for
batch effects with ComBat if applicable. Afterwards, DNAm was correlated with
maternal ppBMI in each of the participating cohorts using robust linear regressions
with the MASS package in R 3.3.2. The code to perform the full analysis and the
details are publicly available as described in the Code Availability section. The
cohort-specific results were then meta-analyzed using the inverse variance-
weighted fixed effects method in the GWAMA software, simultaneously in two
independent laboratories. Results were fully consistent. Statistical significance was
set at a meta-analysis nominal p-value = 1.2e-07, after Bonferroni correction for
multiple-testing. Only CpGs below this threshold were taken into account in the
downstream analyses. Generally, the statistical methods used in each of the
downstream analyses were the ones suggested by the developers of each of the
analytic tool implemented. More details in each of the analytical steps included in
this study can be obtained in the specific section in Methods, Supplementary
Note 1 and the code, as described in the Code Availability section.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The full genome-wide results of the meta-analysis are presented in Supplementary Data 3
and 4 and have been uploaded to the EWAS Catalogue, available in Zenodo with
identifier https://doi.org/10.5281/zenodo.731453465. The individual level data used are
not publicly available for several reasons. First, participants were not explicitly informed
about this in the informed consent. Second, there are some studies that suggest that DNA
methylation data has enough information to identify participants. Third, each PACE
cohort follows different internal regulations in regards to public access of the data.
Individual level data can still be shared with external researchers after signature of a data
transfer agreement (DTA) with each of the participant cohorts, listed in Supplementary
Note 1. More information is available in the PACE consortium website (https://www.
niehs.nih.gov/research/atniehs/labs/epi/pi/genetics/pace/index.cfm). Source data
underlying Fig. 3 is presented in Supplementary Data 9.

Code availability
Scripts to reproduce the analysis have been deposited in a public GitHub repository and
are available in Zenodo with identifier https://doi.org/10.5281/zenodo.731396666.
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