236 research outputs found
Big data analyses reveal patterns and drivers of the movements of southern elephant seals
The growing number of large databases of animal tracking provides an
opportunity for analyses of movement patterns at the scales of populations and
even species. We used analytical approaches, developed to cope with big data,
that require no a priori assumptions about the behaviour of the target agents,
to analyse a pooled tracking dataset of 272 elephant seals (Mirounga leonina)
in the Southern Ocean, that was comprised of >500,000 location estimates
collected over more than a decade. Our analyses showed that the displacements
of these seals were described by a truncated power law distribution across
several spatial and temporal scales, with a clear signature of directed
movement. This pattern was evident when analysing the aggregated tracks despite
a wide diversity of individual trajectories. We also identified marine
provinces that described the migratory and foraging habitats of these seals.
Our analysis provides evidence for the presence of intrinsic drivers of
movement, such as memory, that cannot be detected using common models of
movement behaviour. These results highlight the potential for big data
techniques to provide new insights into movement behaviour when applied to
large datasets of animal tracking.Comment: 18 pages, 5 figures, 6 supplementary figure
Deep learning resolves representative movement patterns in a marine predator species
The analysis of animal movement from telemetry data provides insights into how and why animals move. While traditional approaches to such analysis mostly focus on predicting animal states during movement, we describe an approach that allows us to identify representative movement patterns of different animal groups. To do this, we propose a carefully designed recurrent neural network and combine it with telemetry data for automatic feature extraction and identification of non-predefined representative patterns. In the experiment, we consider a particular marine predator species, the southern elephant seal, as an example. With our approach, we identify that the male seals in our data set share similar movement patterns when they are close to land. We identify this pattern recurring in a number of distant locations, consistent with alternative approaches from previous research
The Ocean and Cryosphere in a Changing Climate in Latin America: Knowledge Gaps and the Urgency to Translate Science Into Action
Climate Change hazards to social-ecological systems are well-documented and the time to act is now. The IPCC-SROCC used the best available scientific knowledge to identify paths for effective adaptation and mitigation of climate change impacts on the ocean and cryosphere. Despite all the evidence highlighted by SROCC and the key role of the ocean and cryosphere for climate change at all levels, Latin America (LA) faces challenges to take effective action mostly due to socio-economic vulnerability, political instability and overall technical capacities. Countries have adopted diverse actions as the information needed by policy makers has been made available, not necessarily in accessible and inclusive ways. Regional imbalance in economic development, technological level, capacity development, societal involvement, and governmental oversight have contributed to skewed geographical and technological gaps of knowledge on key ecosystems and specific areas preventing effective climate actions/solutions. We analyze the Nationally Determined Contributions (NDCs) from the region as proxies to the incorporation of IPCC recommendations. The gaps and opportunities for the uptake of ocean and climate science to political decision making is discussed as five key aspects: (i) climate assessment information and regional policies, (ii) knowledge production, (iii) knowledge accessibility, (iv) knowledge impact to policy, and (v) long term monitoring for decision making. We advocate that the uptake of SROCC findings in LA policies can be enhanced by: (a) embracing local realities and incorporating local, traditional and indigenous knowledge; (b) empowering locals to convey local knowledge to global assessments and adapt findings to local realities; (c) enhancing regional research capabilities; and (d) securing long-term sustainable ocean observations. Local and regional participation in knowledge production and provision enhances communication pathways, climate literacy and engagement which are key for effective action to be reflected in governance. Currently, the lack of accessible and inclusive information at the local level hampers the overall understanding, integration and engagement of the society to mitigate climate effects, perpetuates regional heterogeneity and threatens the efforts to reverse the course of climate change in LA. Local researchers should be empowered, encouraged, rewarded and better included in global climate-ocean scientific assessments.Fil: Muelbert, Mônica M. C.. Universidade Federal de Sao Paulo; Brasil. Universidade Federal do Rio Grande; BrasilFil: Copertino, Margareth. Universidade Federal do Rio Grande; Brasil. Rede Brasileira de Pesquisas sobre Mudanças Climáticas Globais; BrasilFil: Cotrim da Cunha, Leticia. Rede Brasileira de Pesquisas sobre Mudanças Climáticas Globais; Brasil. Universidade do Estado de Rio do Janeiro; BrasilFil: Lewis, Mirtha Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia Golfo San Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia Golfo San Jorge. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigaciones y Transferencia Golfo San Jorge; ArgentinaFil: Polejack, Andrei. World Maritime University; Suecia. Ministério de Ciência, Tecnologia e Inovações; BrasilFil: Peña Puch, Angelina del Carmen. Universidad Autónoma de Campeche; MéxicoFil: Rivera Arriaga, Evelia. Universidad Autónoma de Campeche; Méxic
A Spatial and Temporal Risk Assessment of the Impacts of El Niño on the Tropical Forest Carbon Cycle: Theoretical Framework, Scenarios, and Implications
Strong El Niño events alter tropical climates and may lead to a negative carbon balance in tropical forests and consequently a disruption to the global carbon cycle. The complexity of tropical forests and the lack of data from these regions hamper the assessment of the spatial distribution of El Niño impacts on these ecosystems. Typically, maps of climate anomaly are used to detect areas of greater risk, ignoring baseline climate conditions and forest cover. Here, we integrated climate anomalies from the 1982–1983, 1997–1998, and 2015–2016 El Niño events with baseline climate and forest edge extent, using a risk assessment approach to hypothetically assess the spatial and temporal distributions of El Niño risk over tropical forests under several risk scenarios. The drivers of risk varied temporally and spatially. Overall, the relative risk of El Niño has been increasing driven mainly by intensified forest fragmentation that has led to a greater chance of fire ignition and increased mean annual air temperatures. We identified areas of repeated high risk, where conservation efforts and fire control measures should be focused to avoid future forest degradation and negative impacts on the carbon cycle
Circumpolar habitat use in the southern elephant seal : implications for foraging success and population trajectories
In the Southern Ocean, wide-ranging predators offer the opportunity to quantify how animals respond to differences in the environment because their behavior and population trends are an integrated signal of prevailing conditions within multiple marine habitats. Southern elephant seals in particular, can provide useful insights due to their circumpolar distribution, their long and distant migrations and their performance of extended bouts of deep diving. Furthermore, across their range, elephant seal populations have very different population trends. In this study, we present a data set from the International Polar Year project; Marine Mammals Exploring the Oceans Pole to Pole for southern elephant seals, in which a large number of instruments (N = 287) deployed on animals, encompassing a broad circum-Antarctic geographic extent, collected in situ ocean data and at-sea foraging metrics that explicitly link foraging behavior and habitat structure in time and space. Broadly speaking, the seals foraged in two habitats, the relatively shallow waters of the Antarctic continental shelf and the Kerguelen Plateau and deep open water regions. Animals of both sexes were more likely to exhibit area-restricted search (ARS) behavior rather than transit in shelf habitats. While Antarctic shelf waters can be regarded as prime habitat for both sexes, female seals tend to move northwards with the advance of sea ice in the late autumn or early winter. The water masses used by the seals also influenced their behavioral mode, with female ARS behavior being most likely in modified Circumpolar Deepwater or northerly Modified Shelf Water, both of which tend to be associated with the outer reaches of the Antarctic Continental Shelf. The combined effects of (1) the differing habitat quality, (2) differing responses to encroaching ice as the winter progresses among colonies, (3) differing distances between breeding and haul-out sites and high quality habitats, and (4) differing long-term regional trends in sea ice extent can explain the differing population trends observed among elephant seal colonies.Publisher PDFPeer reviewe
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
A standardisation framework for bio‐logging data to advance ecological research and conservation
Bio‐logging data obtained by tagging animals are key to addressing global conservation challenges. However, the many thousands of existing bio‐logging datasets are not easily discoverable, universally comparable, nor readily accessible through existing repositories and across platforms, slowing down ecological research and effective management. A set of universal standards is needed to ensure discoverability, interoperability and effective translation of bio‐logging data into research and management recommendations.
We propose a standardisation framework adhering to existing data principles (FAIR: Findable, Accessible, Interoperable and Reusable; and TRUST: Transparency, Responsibility, User focus, Sustainability and Technology) and involving the use of simple templates to create a data flow from manufacturers and researchers to compliant repositories, where automated procedures should be in place to prepare data availability into four standardised levels: (a) decoded raw data, (b) curated data, (c) interpolated data and (d) gridded data. Our framework allows for integration of simple tabular arrays (e.g. csv files) and creation of sharable and interoperable network Common Data Form (netCDF) files containing all the needed information for accuracy‐of‐use, rightful attribution (ensuring data providers keep ownership through the entire process) and data preservation security.
We show the standardisation benefits for all stakeholders involved, and illustrate the application of our framework by focusing on marine animals and by providing examples of the workflow across all data levels, including filled templates and code to process data between levels, as well as templates to prepare netCDF files ready for sharing.
Adoption of our framework will facilitate collection of Essential Ocean Variables (EOVs) in support of the Global Ocean Observing System (GOOS) and inter‐governmental assessments (e.g. the World Ocean Assessment), and will provide a starting point for broader efforts to establish interoperable bio‐logging data formats across all fields in animal ecology
- …