24 research outputs found

    Redistribution of cytoplasmic VEGF to the basolateral aspect of renal tubular cells in ischemia-reperfusion injury

    Get PDF
    Redistribution of cytoplasmic VEGF to the basolateral aspect of renal tubular cells in ischemia-reperfusion injury.BackgroundVascular endothelial growth factor (VEGF) mRNA and protein expression are increased by hypoxia in a variety of cell types and organs. In the kidney, however, chronic hypoxia does not up-regulate VEGF mRNA. This suggests that VEGF may be regulated by unique mechanisms in the kidney.MethodsUnilateral ischemia was induced in rats by vascular cross-clamping (40 min) followed by reperfusion (0, 20, 40, and 80 min). The distribution of VEGF protein was determined by immunohistochemical staining and Western blotting. mRNA was detected by Northern blotting and semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). Immunohistochemical staining for VEGF was verified using two VEGF antibodies. To further substantiate the immunohistochemical findings, laser scanning confocal fluorescence microscopy was used to demonstrate the distribution of VEGF protein in rat renal tubular epithelial cells (NRK52-E) subjected to hypoxia (40 min) and re-oxygenation (0, 5, 20, 40 and 80 min).ResultsNormal kidneys showed diffuse immunohistochemical staining for VEGF in all tubules of the renal cortex and medulla. Following ischemia, staining demonstrated a prominent shift of cytoplasmic VEGF to the basolateral aspect of tubular cells with both VEGF antibodies. The distribution of cytoplasmic VEGF returned to normal following 40 and 80 minutes of reperfusion. Western blots of cytoplasmic samples from ischemic kidneys reperfused for 0 and 20 minutes showed decreased levels of VEGF164 compared with normal (P < 0.01). VEGF164 and VEGF188 levels in the membrane fraction showed no change. Northern blots and semiquantitative RT-PCR showed no significant up-regulation of VEGF mRNA or change in the splice pattern. NRK52-E cells subjected to hypoxia and re-oxygenation for 0 and 5 minutes showed increased staining for VEGF compared with normal, with prominent VEGF staining at the periphery of the cell, similar to the appearance in ischemic kidneys. VEGF staining became more diffuse with further re-oxygenation.ConclusionAlthough synthesis of VEGF mRNA and protein is not increased during ischemia reperfusion injury, pre-existing VEGF in the tubular cell cytoplasm redistributes to the basolateral aspect of the cells. These data suggest that the kidney may have evolved unique patterns of VEGF regulation to cope with acute hypoxia

    Dynamic instability of the major urinary protein gene family revealed by genomic and phenotypic comparisons between C57 and 129 strain mice

    Get PDF
    Targeted sequencing, manual genome annotation, phylogenetic analysis and mass spectrometry were used to characterise major urinary proteins (MUPs) and the Mup clusters of two strains of inbred mice

    Molecular complexity of the major urinary protein system of the Norway rat, <i>Rattus norvegicus</i>

    Get PDF
    ABSTRACTMajor urinary proteins (MUP) are the major component of the urinary protein fraction in house mice (Mus spp.) and rats (Rattus spp.). The structure, polymorphism and functions of these lipocalins have been well described in the western European house mouse (Mus musculus domesticus), clarifying their role in semiochemical communication. The complexity of these roles in the mouse raises the question of similar functions in other rodents, including the Norway rat, Rattus norvegicus. Norway rats express MUPs in urine but information about specific MUP isoform sequences and functions is limited. In this study, we present a detailed molecular characterization of the MUP proteoforms expressed in the urine of two laboratory strains, Wistar Han and Brown Norway, and wild caught animals, using a combination of manual gene annotation, intact protein mass spectrometry and bottom-up mass spectrometry-based proteomic approaches. Detailed sequencing of the proteins reveals a less complex pattern of primary sequence polymorphism than the mouse. However, unlike the mouse, rat MUPs exhibit added complexity in the form of post-translational modifications including phosphorylation and exoproteolytic trimming of specific isoforms. The possibility that urinary MUPs may have different roles in rat chemical communication than those they play in the house mouse is also discussed.</jats:p

    Sequential Use of Transcriptional Profiling, Expression Quantitative Trait Mapping, and Gene Association Implicates MMP20 in Human Kidney Aging

    Get PDF
    Kidneys age at different rates, such that some people show little or no effects of aging whereas others show rapid functional decline. We sequentially used transcriptional profiling and expression quantitative trait loci (eQTL) mapping to narrow down which genes to test for association with kidney aging. We first performed whole-genome transcriptional profiling to find 630 genes that change expression with age in the kidney. Using two methods to detect eQTLs, we found 101 of these age-regulated genes contain expression-associated SNPs. We tested the eQTLs for association with kidney aging, measured by glomerular filtration rate (GFR) using combined data from the Baltimore Longitudinal Study of Aging (BLSA) and the InCHIANTI study. We found a SNP association (rs1711437 in MMP20) with kidney aging (uncorrected p = 3.6×10−5, empirical p = 0.01) that explains 1%–2% of the variance in GFR among individuals. The results of this sequential analysis may provide the first evidence for a gene association with kidney aging in humans

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Design tradeoffs for software-managed TLBs

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/8024/5/bac3268.0001.001.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/8024/4/bac3268.0001.001.tx
    corecore