53 research outputs found

    High-throughput biointerfaces for direct, label-free, and multiplexed metaplasmonic biosensing

    Get PDF
    In recent years, metaplasmonic biosensors have emerged as a novel counterpart of well-established plasmonic biosensors based on thin metallic layers. Metaplasmonic biosensors offer high potential for sensor miniaturiza-tion, extreme sensitivity biosensing, and high multiplexing capabilities with detection methods free of coupling optical elements. These capabilities make metaplasmonic biosensors highly attractive for Point-of-Care and handled/portable devices or novel On-Chip devices; as a result, it has increased the number of prototypes and potential applications that emerged during the last years. One of the main challenges to achieving fully operative devices is the achievement of high-throughput biointerfaces for sensitive and selective biodetection in complex media. Despite the superior surface sensitivity achieved by metaplasmonic sensors compared to conventional plasmonic sensors based on metallic thin films, the main limitations to achieving high-throughput and multiplexed biosensing usually are associated with the sensitivity and selectivity of the bioin-terface and, as a consequence, their application to the direct analysis of real complex samples. This graphical review discusses the potential challenges and capabilities of different biofunctionalization strategies, biorecog-nition elements, and antifouling strategies to achieve scalable and high-throughput metaplasmonic biosensing for Point-of-Care devices and bioengineering applications like Organs-On-Chip

    An upper limit on the mass of the black hole in Ursa Minor dwarf galaxy

    Full text link
    The well-established correlations between the mass of massive black holes (BHs) in the nuclei of most studied galaxies and various global properties of their hosting galaxy lend support to the idea that dwarf galaxies and globular clusters could also host a BH in their centers. Direct kinematic detection of BHs in dwarf spheroidal (dSph) galaxies are seriously hindered by the small number of stars inside the gravitational influence region of the BH. The aim of this Letter is to establish an upper dynamical limit on the mass of the putative BH in the Ursa Minor (UMi) dSph galaxy. We present direct N-body simulations of the tidal disruption of the dynamical fossil observed in UMi, with and without a massive BH. We find that the observed substructure is incompatible with the presence of a massive BH of (2-3)x10^4 Msun within the core of UMi. These limits are consistent with the extrapolation of the M_{BH}-sigma relation to the M_{BH}<10^6 Msun regime. We also show that the BH may be off-center with respect to the center of symmetry of the whole galaxy.Comment: 6 pages, 3 figures, ApJL (in press

    Diseñando para la comunidad de costureras de La Mezquitera

    Get PDF
    El objetivo del PAP Diseñando para la comunidad de costureras de la Mezquitera es crear empresarios de la industria textil y de la moda con responsabilidad social. Se trabajó con un equipo multidisciplinario de alumnos, así como con la comunidad de costureras de la Mezquitera. Una comunidad organizada años atrás por un PAP del Iteso. Una vez entendido el contexto y entorno actual que rodea a la comunidad se procedió a dar solución a la problemática. Se propusieron 9 marcas de diseño, de prendas de vestir y accesorios para hogar, hechas de materiales textiles. Se hicieron estudios de factibilidad de acuerdo con las tendencias de consumo actuales, se diseñaron prendas con elementos diferenciadores para reducir al máximo la posibilidad de fracaso y se sacaron producciones pequeñas para evitar la sobreproducción de prendas y el fast fashion. Para llevar a cabo dichas producciones se pasó por la etapa de prototipado, optimizando recursos y minimizando riesgos, y se pasó a producción en volumen. Se procedió a hacer la identidad de cada marca, de acuerdo con el nicho de mercado de cada una, redes sociales individuales para publicidad y venta y fotografía de producto. También se hicieron redes comunitarias para mostrar el trabajo del PAP e impulsar las marcas, además de un sitio web comunitario del colectivo. Se logró un equilibrio entre diseño, emprendimiento y generación de empleos con trabajo ético y salario justo, cuidando la optimización de recursos y la reducción de desperdicios.ITESO, A.C

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Modelling Zostera marina and Ulva spp. in a coastal lagoon

    Get PDF
    We have implemented new modules of seagrass and macroalgae in the European Regional Seas Ecosystem Model (ERSEM). The modules were tested using a version of ERSEM coupled with the General Ocean Turbulence Model (GOTM) in San Quintin Bay (SQB), a coastal lagoon in Baja California, Mexico. As we are working in a region where horizontal advective transport of nutrients is important, we have included the horizontal nutrient gradients which result in nutrient advection when combined with the local currents. The addition of the Zostera marina and Ulva spp. modules to ERSEM, and the inclusion of advection results in a better simulation of the seasonal and interannual trends in nutrient concentrations and macrophyte biomasses in SQB. The differences between the simulations with and without advection are particularly apparent during the upwelling periods. Therefore, by increasing the horizontal gradients of nitrate in the model during the strong upwelling seasons a stronger advection results in higher nitrate concentrations from May to July in 2004 and 2005. The difference in the seasonal trend in biomasses between both macrophytes, with Ulva spp. reaching its seasonal maximum in June–July and Z. marina reaching it in September–October reflects the different response to the various factors controlling their primary production. Z. marina is particularly sensitive to variations in the photosynthetically active radiation (PAR) and the light limitation factor, while Ulva spp. is more sensitive to changes in the maximum uptake rates of nitrate. The model was forced using field data from the lagoon collected in 2004 and 2005
    corecore