297 research outputs found

    Histopathological and immunohistochemical evaluation of cellular response to a woven and electrospun polydioxanone (PDO) and polycaprolactone (PCL) patch for tendon repair

    Get PDF
    We investigated endogenous tissue response to a woven and electrospun polydioxanone (PDO) and polycaprolactone (PCL) patch intended for tendon repair. A sheep tendon injury model characterised by a natural history of consistent failure of healing was chosen to assess the biological potential of woven and aligned electrospun fibres to induce a reparative response. Patches were implanted into 8 female adult English Mule sheep. Significant infiltration of tendon fibroblasts was observed within the electrospun component of the patch but not within the woven component. The cellular infiltrate into the electrospun fibres was accompanied by an extensive network of new blood vessel formation. Tendon fibroblasts were the most abundant scaffold-populating cell type. CD45+, CD4+ and CD14+ cells were also present, with few foreign body giant cells. There were no local or systemic signs of excessive inflammation with normal hematology and serology for inflammatory markers three months after scaffold implantation. In conclusion, we demonstrate that an endogenous healing response can be safely induced in tendon by means of biophysical cues using a woven and electrospun patch

    Comparison of PBO solvers in a dependency solving domain

    Full text link
    Linux package managers have to deal with dependencies and conflicts of packages required to be installed by the user. As an NP-complete problem, this is a hard task to solve. In this context, several approaches have been pursued. Apt-pbo is a package manager based on the apt project that encodes the dependency solving problem as a pseudo-Boolean optimization (PBO) problem. This paper compares different PBO solvers and their effectiveness on solving the dependency solving problem.Comment: In Proceedings LoCoCo 2010, arXiv:1007.083

    Histological evaluation of cellular response to a multifilament electrospun suture for tendon repair

    Get PDF
    Background Rotator cuff tendon repair in humans is a commonly performed procedure aimed at restoring the tendon-bone interface. Despite significant innovation of surgical techniques and suture anchor implants, only 60% of repairs heal successfully. One strategy to enhance repair is the use of bioactive sutures that provide the native tendon with biophysical cues for healing. We investigated the tissue response to a multifilament electrospun polydioxanone (PDO) suture in a sheep tendon injury model characterised by a natural history of failure of healing. Methodology and results Eight skeletally mature English Mule sheep underwent repair with electrospun sutures. Monofilament sutures were used as a control. Three months after surgery, all tendon repairs healed, without systemic features of inflammation, signs of tumour or infection at necropsy. A mild local inflammatory reaction was seen. On histology the electrospun sutures were densely infiltrated with predominantly tendon fibroblast-like cells. In comparison, no cellular infiltration was observed in the control suture. Neovascularisation was observed within the electrospun suture, whilst none was seen in the control. Foreign body giant cells were rarely seen with either sutures. Conclusion This study demonstrates that a tissue response can be induced in tendon with a multifilament electrospun suture with no safety concerns

    Leading-order QCD Analysis of Neutrino-Induced Dimuon Events

    Get PDF
    The results of a leading-order QCD analysis of neutrino-induced charm production are presented. They are based on a sample of 4111 \numu- and 871 \anumu-induced opposite-sign dimuon events with Eμ1,Eμ2>6 GeVE_{\mu 1},E_{\mu 2} > 6~{\rm GeV}, 355.5GeV235 5.5\,{\rm GeV^2}, observed in the CHARM~II detector exposed to the CERN wideband neutrino and antineutrino beams. The analysis yields the value of \linebreak the charm quark mass mc=1.79±0.38GeV/c2m_c=1.79\pm0.38\,{\rm GeV}/c^2 and the Cabibbo--Kobayashi--Maskawa matrix element Vcd=0.219±0.016|V_{cd}|=0.219\pm0.016. The strange quark content of the nucleon is found to be suppressed with respect to non-strange sea quarks by a factor κ=0.39±0.09\kappa =0.39\pm0.09

    Experimental search for muonic photons

    Get PDF
    We report new limits on the production of muonic photons in the CERN neutrino beam. The results are based on the analysis of neutrino production of dimuons in the CHARM II detector. A 90%90\% CL limit on the coupling constant of muonic photons, αμ/α<(1.5÷3.2)×106\alpha_{\mu} / \alpha < (1.5 \div 3.2) \times10^{-6} is derived for a muon neutrino mass in the range mνμ=(1020÷105)m_{\nu_{\mu}} = (10^{-20} \div 10^5) eV. This improves the limit obtained from a precision measurement of the anomalous magnetic moment of the muon (g2)μ(g-2)_\mu by a factor from 8 to 4

    Corrigendum to "European contribution to the study of ROS:A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)" [Redox Biol. 13 (2017) 94-162]

    Get PDF
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed

    ATLAS pixel detector electronics and sensors

    Get PDF
    The silicon pixel tracking system for the ATLAS experiment at the Large Hadron Collider is described and the performance requirements are summarized. Detailed descriptions of the pixel detector electronics and the silicon sensors are given. The design, fabrication, assembly and performance of the pixel detector modules are presented. Data obtained from test beams as well as studies using cosmic rays are also discussed

    Tendon Fascicle-Inspired Nanofibrous Scaffold of Polylactic acid/Collagen with Enhanced 3D-Structure and Biomechanical Properties

    Get PDF
    Surgical treatment of tendon lesions still yields unsatisfactory clinical outcomes. The use of bioresorbable scaffolds represents a way forward to improve tissue repair. Scaffolds for tendon reconstruction should have a structure mimicking that of the natural tendon, while providing adequate mechanical strength and stiffness. In this paper, electrospun nanofibers of two crosslinked PLLA/Collagen blends (PLLA/Coll-75/25, PLLA/Coll-50/50) were developed and then wrapped in bundles, where the nanofibers are predominantly aligned along the bundles. Bundle morphology was assessed via SEM and high-resolution x-ray computed tomography (XCT). The 0.4-micron resolution in XCT demonstrated a biomimetic morphology of the bundles for all compositions, with a predominant nanofiber alignment and some scatter (50-60% were within 12° from the axis of the bundle), similar to the tendon microstructure. Human fibroblasts seeded on the bundles had increased metabolic activity from day 7 to day 21 of culture. The stiffness, strength and toughness of the bundles are comparable to tendon fascicles, both in the as-spun condition and after crosslinking, with moderate loss of mechanical properties after ageing in PBS (7 and 14 days). PLLA/Coll-75/25 has more desirable mechanical properties such as stiffness and ductility, compared to the PLLA/Coll-50/50. This study confirms the potential to bioengineer tendon fascicles with enhanced 3D structure and biomechanical properties

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    corecore