2,940 research outputs found

    The Execution of Private McGuffin

    Get PDF
    A fictional take on the discipline meted out by a cavalry unit fighting on the Great Plains. Articles, stories, and other compositions in this archive were written by participants in the Mighty Pen Project. The program, developed by author David L. Robbins, and in partnership with Virginia Commonwealth University and the Virginia War Memorial in Richmond, Virginia, offers veterans and their family members a customized twelve-week writing class, free of charge. The program encourages, supports, and assists participants in sharing their stories and experiences of military experience so both writer and audience may benefit

    Race to the surface: modelling bacterial and human cell growth on dental implant surfaces

    Get PDF
    Two barriers to successful dental implant surgery are (1) the possibility of infection and (2) poor compatibility with native human cells. The mouth is colonised by millions of bacteria, living in communities called biofilms. Human cells in the mouth are in competition with these bacteria to occupy the implant surface. Infection can result in the need for implant removal, which is both costly and very painful. New materials for implants are continuously being developed, but are not making it into clinics. Testing innovative materials is challenging due to the highly complex oral environment. We are combining models of oral tissue with bacterial biofilms, to better understand how we can help human cells win the 'race to the surface'

    Identifying Student Difficulties with Entropy, Heat Engines, and the Carnot Cycle

    Get PDF
    We report on several specific student difficulties regarding the Second Law of Thermodynamics in the context of heat engines within upper-division undergraduates thermal physics courses. Data come from ungraded written surveys, graded homework assignments, and videotaped classroom observations of tutorial activities. Written data show that students in these courses do not clearly articulate the connection between the Carnot cycle and the Second Law after lecture instruction. This result is consistent both within and across student populations. Observation data provide evidence for myriad difficulties related to entropy and heat engines, including students' struggles in reasoning about situations that are physically impossible and failures to differentiate between differential and net changes of state properties of a system. Results herein may be seen as the application of previously documented difficulties in the context of heat engines, but others are novel and emphasize the subtle and complex nature of cyclic processes and heat engines, which are central to the teaching and learning of thermodynamics and its applications. Moreover, the sophistication of these difficulties is indicative of the more advanced thinking required of students at the upper division, whose developing knowledge and understanding give rise to questions and struggles that are inaccessible to novices

    Student understanding of the Boltzmann factor

    Get PDF
    We present results of our investigation into student understanding of the physical significance and utility of the Boltzmann factor in several simple models. We identify various justifications, both correct and incorrect, that students use when answering written questions that require application of the Boltzmann factor. Results from written data as well as teaching interviews suggest that many students can neither recognize situations in which the Boltzmann factor is applicable, nor articulate the physical significance of the Boltzmann factor as an expression for multiplicity, a fundamental quantity of statistical mechanics. The specific student difficulties seen in the written data led us to develop a guided-inquiry tutorial activity, centered around the derivation of the Boltzmann factor, for use in undergraduate statistical mechanics courses. We report on the development process of our tutorial, including data from teaching interviews and classroom observations on student discussions about the Boltzmann factor and its derivation during the tutorial development process. This additional information informed modifications that improved students' abilities to complete the tutorial during the allowed class time without sacrificing the effectiveness as we have measured it. These data also show an increase in students' appreciation of the origin and significance of the Boltzmann factor during the student discussions. Our findings provide evidence that working in groups to better understand the physical origins of the canonical probability distribution helps students gain a better understanding of when the Boltzmann factor is applicable and how to use it appropriately in answering relevant questions

    Cluster synchronization in an ensemble of neurons interacting through chemical synapses

    Full text link
    In networks of periodically firing spiking neurons that are interconnected with chemical synapses, we analyze cluster state, where an ensemble of neurons are subdivided into a few clusters, in each of which neurons exhibit perfect synchronization. To clarify stability of cluster state, we decompose linear stability of the solution into two types of stabilities: stability of mean state and stabilities of clusters. Computing Floquet matrices for these stabilities, we clarify the total stability of cluster state for any types of neurons and any strength of interactions even if the size of networks is infinitely large. First, we apply this stability analysis to investigating synchronization in the large ensemble of integrate-and-fire (IF) neurons. In one-cluster state we find the change of stability of a cluster, which elucidates that in-phase synchronization of IF neurons occurs with only inhibitory synapses. Then, we investigate entrainment of two clusters of IF neurons with different excitability. IF neurons with fast decaying synapses show the low entrainment capability, which is explained by a pitchfork bifurcation appearing in two-cluster state with change of synapse decay time constant. Second, we analyze one-cluster state of Hodgkin-Huxley (HH) neurons and discuss the difference in synchronization properties between IF neurons and HH neurons.Comment: Notation for Jacobi matrix is changed. Accepted for publication in Phys. Rev.

    Technology, inclusivity and the rogue: bats and the war against the ‘invisible enemy’

    Get PDF
    Although tempting to envisage the emerging violence in conservation as either against nature or in defence of it, this paper argues that such violence is increasingly between ‘the included’ and ‘rogues’ in ways that transcend the nature : society binary. The paper traces how the emergence of these battle lines is associated with the digital information revolution that is producing discourses and practices of ‘inclusion’ that embrace social and natural worlds, whilst recasting a hitherto knowable and governable ‘excluded’ as more unknowable and threatening ‘rogues’. Accordingly, the paper then illustrates how the battle against the ‘invisible enemy’ of Ebola was fought not just against rogue viruses but against rogue bats, rogue deforesters and rogue patients, transcending the nature : human binary, and similarly that sustainable solutions are being sought in rearranging landscapes within an inclusive ‘One Health’ approach

    From holism to compositionality: memes and the evolution of segmentation, syntax, and signification in music and language

    Get PDF
    Steven Mithen argues that language evolved from an antecedent he terms “Hmmmmm, [meaning it was] Holistic, manipulative, multi-modal, musical and mimetic”. Owing to certain innate and learned factors, a capacity for segmentation and cross-stream mapping in early Homo sapiens broke the continuous line of Hmmmmm, creating discrete replicated units which, with the initial support of Hmmmmm, eventually became the semantically freighted words of modern language. That which remained after what was a bifurcation of Hmmmmm arguably survived as music, existing as a sound stream segmented into discrete units, although one without the explicit and relatively fixed semantic content of language. All three types of utterance – the parent Hmmmmm, language, and music – are amenable to a memetic interpretation which applies Universal Darwinism to what are understood as language and musical memes. On the basis of Peter Carruthers’ distinction between ‘cognitivism’ and ‘communicativism’ in language, and William Calvin’s theories of cortical information encoding, a framework is hypothesized for the semantic and syntactic associations between, on the one hand, the sonic patterns of language memes (‘lexemes’) and of musical memes (‘musemes’) and, on the other hand, ‘mentalese’ conceptual structures, in Chomsky’s ‘Logical Form’ (LF)

    A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems

    Full text link
    In this paper we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware-experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results

    Daun02 inactivation of behaviorally-activated Fos-expressing neuronal ensembles

    Get PDF
    Learned associations about salient experiences (e.g. drug exposure, stress) and their associated environmental stimuli are mediated by a minority of sparsely distributed, behaviorally activated neurons coined ‘neuronal ensembles’. For many years, it was not known whether these neuronal ensembles played causal roles in mediating learned behaviors. However, in the last several years the ‘Daun02 inactivation technique’ in Fos-lacZ transgenic rats has proved very useful in establishing causal links between neuronal ensembles that express the activity-regulated protein ‘Fos’ and learned behaviors. Fosexpressing neurons in these rats also express the bacterial protein b-galactosidase (b-gal) in strongly activated neurons. When the prodrug Daun02 is injected into the brains of these rats 90 min after a behavior (e.g. drug-seeking) or cue exposure, then the Daun02 is converted into daunorubicin by b-gal, which selectively inactivates the Fos and b-galexpressing neurons that were activated 90 min before the Daun02 injection. This unit presents protocols for breeding the Fos-lacZ rats and conducting appropriate Daun02 inactivation experiments
    corecore