126 research outputs found

    An Integrated Physiological Model of the Lung Mechanics and Gas Exchange Using Electrical Impedance Tomography in the Analysis of Ventilation Strategies in ARDS Patients

    Get PDF
    Mouloud Denai, M. Mahfouf, A. Wang, D. A. Linkens, and G. H. Mills, 'An Integrated Physiological Model of the Lung Mechanics and Gas Exchange Using Electrical Impedance Tomography in the Analysis of Ventilation Strategies in ARDS Patients'. Paper presented at the 3rd International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2010), 20 - 23 January 2010, Valencia, Spain.Peer reviewedFinal Published versio

    Focusing of images using spatial operators.

    Get PDF
    Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis1988 .M264. Source: Masters Abstracts International, Volume: 40-07, page: . Thesis (M.A.Sc.)--University of Windsor (Canada), 1988

    Application of a Novel Synergetic Control for Optimal Power Extraction of a Small-Scale Wind Generation System with Variable Loads and Wind Speeds

    Get PDF
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).The synergetic control technique (SCT) has the solution for understanding the symmetry inherent in the non-linear properties of wind turbines (WTs); therefore, they achieve excellent performance and enhance the operation of the WT. Small-scale WTs are efficient and cost-effective; they are usually installed close to where the generated electricity is used. This technology is gaining popularity worldwide for off-grid electricity generation, such as in rural homes, farms, small factories, and commercial properties. To enhance the efficiency of the WT, it is vital to operate the WT at its maximum power. This work proposes an efficient and fast maximum power point tracking (MPPT) technique based on the SCT to eradicate the drawbacks of the conventional methods and enhance the operation of the WT at the MPP regardless of wind speed and load changes. The SCT has advantages, such as robustness, simplified design, fast response, no requirement for knowledge of WT characteristics, no need for wind sensors or intricate power electronics, and straightforward implementation. Furthermore, it improves speed convergence with minimal steady-state oscillations at the MPP. The investigated configuration involves a wind-driven permanent magnet synchronous generator (PMSG), uncontrolled rectifier, boost converter, and variable load. The two converters are used to integrate the PMSG with the load. Three scenarios (step changes in wind speed, stochastic changes in wind speed, and variable electrical load) are studied to assess the SCT. The results prove a high performance of the suggested MPPT control method for a fast convergence speed, boosted WT efficacy, low oscillation levels, and applicability under a variety of environmental situations. This work used the MATLAB/Simulink program and was then implemented on a dSPACE 1104 control board to assess the efficacy of the SCT. Furthermore, experimental validation on a 1 kW Darrieus-type WT driving a PMSG was performed.Peer reviewe

    A Compact ACS-Fed Tri-band Microstrip Monopole Antenna for WLAN/WiMAX Applications

    Get PDF
    This paper proposes a novel small asymmetric coplanar strip (ACS) fed tri-band monopole antenna for WLAN and WiMAX applications. To tune and create multiple resonant frequencies, the exciting strip of monopole antenna is connected to two different arms which are a J-shaped directed toward the asymmetric ground plane and an open stub. The proposed monopole antenna with a total size of 14.6 x17.5 mm2 is fabricated and tested. The measured results indicate that the antenna has impedance bandwidths for 10-dB return loss reach about 500 MHz (2.01-2.52 GHz), 230 MHz (3.48-3.71 GHz) and 1.2GHz (5.59-6.72 GHz) which cover widely the 2.4/5.8 GHz WLAN bands and the 3.5GHz WiMAX band. The simulated radiation patterns of the proposed antenna at the three resonant frequencies have a dipole-like radiation pattern in both E-and H-Planes. The compact size, the simple structure and good radiation performances of the proposed antenna makes it well-suited forthe intended applications

    Improved control strategy of DFIG-based wind turbines using direct torque and direct power control techniques

    Get PDF
    This paper presents different control strategies for a variable-speed wind energy conversion system (WECS), based on a doubly fed induction generator. Direct Torque Control (DTC) with Space-Vector Modulation is used on the rotor side converter. This control method is known to reduce the fluctuations of the torque and flux at low speeds in contrast to the classical DTC, where the frequency of switching is uncontrollable. The reference for torque is obtained from the maximum power point tracking technique of the wind turbine. For the grid-side converter, a fuzzy direct power control is proposed for the control of the instantaneous active and reactive power. Simulation results of the WECS are presented to compare the performance of the proposed and classical control approaches.Peer reviewedFinal Accepted Versio

    Intelligent Health Monitoring of Machine Bearings Based on Feature Extraction

    Get PDF
    This document is the Accepted Manuscript of the following article: Mohammed Chalouli, Nasr-eddine Berrached, and Mouloud Denai, ‘Intelligent Health Monitoring of Machine Bearings Based on Feature Extraction’, Journal of Failure Analysis and Prevention, Vol. 17 (5): 1053-1066, October 2017. Under embargo. Embargo end date: 31 August 2018. The final publication is available at Springer via DOI: https://doi.org/10.1007/s11668-017-0343-y.Finding reliable condition monitoring solutions for large-scale complex systems is currently a major challenge in industrial research. Since fault diagnosis is directly related to the features of a system, there have been many research studies aimed to develop methods for the selection of the relevant features. Moreover, there are no universal features for a particular application domain such as machine diagnosis. For example, in machine bearing fault diagnosis, these features are often selected by an expert or based on previous experience. Thus, for each bearing machine type, the relevant features must be selected. This paper attempts to solve the problem of relevant features identification by building an automatic fault diagnosis process based on relevant feature selection using a data-driven approach. The proposed approach starts with the extraction of the time-domain features from the input signals. Then, a feature reduction algorithm based on cross-correlation filter is applied to reduce the time and cost of the processing. Unsupervised learning mechanism using K-means++ selects the relevant fault features based on the squared Euclidian distance between different health states. Finally, the selected features are used as inputs to a self-organizing map producing our health indicator. The proposed method is tested on roller bearing benchmark datasets.Peer reviewe

    Power management and control strategies for off-grid hybrid power systems with renewable energies and storage

    Get PDF
    This document is the Accepted Manuscript of the following article: Belkacem Belabbas, Tayeb Allaoui, Mohamed Tadjine, and Mouloud Denai, 'Power management and control strategies for off-grid hybrid power systems with renewable energies and storage', Energy Systems, September 2017. Under embargo. Embargo end date: 19 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s12667-017-0251-y.This paper presents a simulation study of standalone hybrid Distributed Generation Systems (DGS) with Battery Energy Storage System (BESS). The DGS consists of Photovoltaic (PV) panels as Renewable Power Source (RPS), a Diesel Generator (DG) for power buck-up and a BESS to accommodate the surplus of energy, which may be employed in times of poor PV generation. While off-grid DGS represent an efficient and cost-effective energy supply solution particularly to rural and remote areas, fluctuations in voltage and frequency due to load variations, weather conditions (temperature, irradiation) and transmission line short-circuits are major challenges. The paper suggests a hierarchical Power Management (PM) and controller structure to improve the reliability and efficiency of the hybrid DGS. The first layer of the overall control scheme includes a Fuzzy Logic Controller (FLC) to adjust the voltage and frequency at the Point of Common Coupling (PCC) and a Clamping Bridge Circuit (CBC) which regulates the DC bus voltage. A maximum power point tracking (MPPT) controller based on FLC is designed to extract the optimum power from the PV. The second control layer coordinates among PV, DG and BESS to ensure reliable and efficient power supply to the load. MATLAB Simulink is used to implement the overall model of the off-grid DGS and to test the performance of the proposed control scheme which is evaluated in a series of simulations scenarios. The results demonstrated the good performance of the proposed control scheme and effective coordination between the DGS for all the simulation scenarios considered.Peer reviewedFinal Accepted Versio

    Colonization of the Mediterranean Basin by the vector biting midge species Culicoides imicola: an old story

    Full text link
    Understanding the demographic history and genetic make-up of colonizing species is critical for inferring population sources and colonization routes. This is of main interest for designing accurate control measures in areas newly colonized by vector species of economically important pathogens. The biting midge Culicoides imicola is a major vector of Orbiviruses to livestock. Historically, the distribution of this species was limited to the Afrotropical region. Entomological surveys first revealed the presence of C. imicola in the south of the Mediterranean basin by the 1970's. Following recurrent reports of massive bluetongue outbreaks since the 1990s, the presence of the species was confirmed in northern areas. In this study, we addressed the chronology and processes of C. imicola colonization in the Mediterranean basin. We characterized the genetic structure of its populations across Mediterranean and African regions using both mitochondrial and nuclear markers, and combined phylogeographical analyses with population genetics and approximate Bayesian computation. We found a west/east genetic differentiation between populations, occurring both within Africa and within the Mediterranean basin. We demonstrated that three of these groups had experienced demographic expansions in the Pleistocene, probably because of climate changes during this period. Finally, we showed that C. imicola could have colonized the Mediterranean basin in the late Pleistocene or early Holocene through a single event of introduction; however we cannot exclude the hypothesis involving two routes of colonization. Thus, the recent bluetongue outbreaks are not linked to C. imicola colonization event, but rather to biological changes in the vector or the virus
    corecore