251 research outputs found

    Collisional Cascades in Planetesimal Disks II. Embedded Planets

    Full text link
    We use a multiannulus planetesimal accretion code to investigate the growth of icy planets in the outer regions of a planetesimal disk. In a quiescent minimum mass solar nebula, icy planets grow to sizes of 1000--3000 km on a timescale t = 15-20 Myr (a/30 AU)^3 where a is the distance from the central star. Planets form faster in more massive nebulae. Newly-formed planets stir up leftover planetesimals along their orbits and produce a collisional cascade where icy planetesimals are slowly ground to dust. The dusty debris of planet formation has physical characteristics similar to those observed in beta Pic, HR 4796A, and other debris disks. We derive dust masses for small particles, 1 mm and smaller, and large particles, 1 mm and larger, as a function of the initial conditions in the planetesimal disk. The dust luminosities derived from these masses are similar to those observed in Vega, HR 4796A, and other debris disks. The calculations produce bright rings and dark gaps. Bright rings occur where 1000 km and larger planets have recently formed. Dark gaps are regions where planets have cleared out dust or shadows where planets have yet to form.Comment: to be published in the Astronomical Journal, January 2004; 7 pages of text; 17 figures at http://cfa-www.harvard.edu/~kenyon/pf/emb-planet-figures.pdf; 2 animations at http://cfa-www.harvard.edu/~kenyon/pf/emb-planet-movies.htm

    Modulation of Circumstellar Extinction in a Young Binary System with a Low-Mass Companion in a Noncoplanar Orbit

    Full text link
    The cyclic activity model of a young star with the low-mass secondary component (q = M2/M1 <= 0.1) accreting a matter from circumbinary disk is considered. It is assumed that the orbit is circular and the disk and orbital planes are non-coplanar. Sets of hydrodynamics models of such a system have been calculated by the SPH method and then the variations of the circumstellar extinction and phase light curves were determined. The calculations showed that depending on the model parameters and orientation of the system in regards to an observer the different in shape and amplitude light curves can be observed. An important property of the considered models is also the dependence of the mass accretion rate onto the components on the phase of the orbital period. The results of the calculation can be used for analysis of the cyclic activity of UX Ori stars and young stars with the long-lasting eclipses.Comment: 14 pages, 7 figure

    Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor. II. Concept validation with ZELDA on VLT/SPHERE

    Full text link
    Warm or massive gas giant planets, brown dwarfs, and debris disks around nearby stars are now routinely observed by dedicated high-contrast imaging instruments on large, ground-based observatories. These facilities include extreme adaptive optics (ExAO) and state-of-the-art coronagraphy to achieve unprecedented sensitivities for exoplanet detection and spectral characterization. However, differential aberrations between the ExAO sensing path and the science path represent a critical limitation for the detection of giant planets with a contrast lower than a few 10−610^{-6} at very small separations (<0.3\as) from their host star. In our previous work, we proposed a wavefront sensor based on Zernike phase contrast methods to circumvent this issue and measure these quasi-static aberrations at a nanometric level. We present the design, manufacturing and testing of ZELDA, a prototype that was installed on VLT/SPHERE during its reintegration in Chile. Using the internal light source of the instrument, we performed measurements in the presence of Zernike or Fourier modes introduced with the deformable mirror. Our experimental and simulation results are consistent, confirming the ability of our sensor to measure small aberrations (<50 nm rms) with nanometric accuracy. We then corrected the long-lived non-common path aberrations in SPHERE based on ZELDA measurements. We estimated a contrast gain of 10 in the coronagraphic image at 0.2\as, reaching the raw contrast limit set by the coronagraph in the instrument. The simplicity of the design and its phase reconstruction algorithm makes ZELDA an excellent candidate for the on-line measurements of quasi-static aberrations during the observations. The implementation of a ZELDA-based sensing path on the current and future facilities (ELTs, future space missions) could ease the observation of the cold gaseous or massive rocky planets around nearby stars.Comment: 13 pages, 12 figures, A&A accepted on June 3rd, 2016. v2 after language editin

    Collisional Cascades in Planetesimal Disks I. Stellar Flybys

    Get PDF
    We use a new multiannulus planetesimal accretion code to investigate the evolution of a planetesimal disk following a moderately close encounter with a passing star. The calculations include fragmentation, gas and Poynting-Robertson drag, and velocity evolution from dynamical friction and viscous stirring. We assume that the stellar encounter increases planetesimal velocities to the shattering velocity, initiating a collisional cascade in the disk. During the early stages of our calculations, erosive collisions damp particle velocities and produce substantial amounts of dust. For a wide range of initial conditions and input parameters, the time evolution of the dust luminosity follows a simple relation, L_d/L_{\star} = L_0 / [alpha + (t/t_d)^{beta}]. The maximum dust luminosity L_0 and the damping time t_d depend on the disk mass, with L_0 proportional to M_d and t_d proportional to M_d^{-1}. For disks with dust masses of 1% to 100% of the `minimum mass solar nebula' (1--100 earth masses at 30--150 AU), our calculations yield t_d approx 1--10 Myr, alpha approx 1--2, beta = 1, and dust luminosities similar to the range observed in known `debris disk' systems, L_0 approx 10^{-3} to 10^{-5}. Less massive disks produce smaller dust luminosities and damp on longer timescales. Because encounters with field stars are rare, these results imply that moderately close stellar flybys cannot explain collisional cascades in debris disk systems with stellar ages of 100 Myr or longer.Comment: 33 pages of text, 12 figures, and an animation. The paper will appear in the March 2002 issue of the Astronmomical Journal. The animation and a copy of the paper with full resolution figures are at S. Kenyon's planet formation website: http://cfa-www.harvard.edu/~kenyon/p

    Orbital characterization of the \beta Pictoris b giant planet

    Full text link
    In June 2010, we confirmed the existence of a giant planet in the disk of the young star Beta Pictoris, located between 8 AU and 15 AU from the star. This young planet offers the rare opportunity to monitor a large fraction of the orbit using the imaging technique over a reasonably short timescale. Using the NAOS-CONICA adaptive-optics instrument (NACO) at the Very Large Telescope (VLT), we obtained repeated follow-up images of the Bpic system in the Ks and L' filters at four new epochs in 2010 and 2011. Complementing these data with previous measurements, we conduct a homogeneous analysis, which covers more than eight yrs, to accurately monitor the Bpic b position relative to the star. On the basis of the evolution of the planet's relative position with time, we derive the best-fit orbital solutions for our measurements. More reliable results are found with a Markov-chain Monte Carlo approach. The solutions favor a low-eccentricity orbit e < 0.17, with semi-major axis in the range 8--9 AU corresponding to orbital periods of 17--21 yrs. Our solutions favor a highly inclined solution with a peak around i=88.5+-1.7 deg, and a longitude of ascending node tightly constrained at Omega = -147.5+-1.5 deg. These results indicate that the orbital plane of the planet is likely to be above the midplane of the main disk, and compatible with the warp component of the disk being tilted between 3.5 deg and 4.0 deg. This suggests that the planet plays a key role in the origin of the inner warped-disk morphology of the Bpic disk. Finally, these orbital parameters are consistent with the hypothesis that the planet is responsible for the transit-like event observed in November 1981, and also linked to the cometary activity observed in the Bpic system.Comment: 10 pages, 12 figures, accepted to A&

    Searching for sub-stellar companion into the LkCa15 proto-planetary disk

    Full text link
    Recent sub-millimetric observations at the Plateau de Bure interferometer evidenced a cavity at ~ 46 AU in radius into the proto-planetary disk around the T Tauri star LkCa15 (V1079 Tau), located in the Taurus molecular cloud. Additional Spitzer observations have corroborated this result possibly explained by the presence of a massive (>= 5 MJup) planetary mass, a brown dwarf or a low mass star companion at about 30 AU from the star. We used the most recent developments of high angular resolution and high contrast imaging to search directly for the existence of this putative companion, and to bring new constraints on its physical and orbital properties. The NACO adaptive optics instrument at VLT was used to observe LkCa15 using a four quadrant phase mask coronagraph to access small angular separations at relatively high contrast. A reference star at the same parallactic angle was carefully observed to optimize the quasi-static speckles subtraction (limiting our sensitivity at less than 1.0). Although we do not report any positive detection of a faint companion that would be responsible for the observed gap in LkCa15's disk (25-30 AU), our detection limits start constraining its probable mass, semi-major axis and eccentricity. Using evolutionary model predictions, Monte Carlo simulations exclude the presence of low eccentric companions with masses M >= 6 M Jup and orbiting at a >= 100 AU with significant level of confidence. For closer orbits, brown dwarf companions can be rejected with a detection probability of 90% down to 80 AU (at 80% down to 60 AU). Our detection limits do not access the star environment close enough to fully exclude the presence of a brown dwarf or a massive planet within the disk inner activity (i.e at less than 30 AU). Only, further and higher contrast observations should unveil the existence of this putative companion inside the LkCa15 disk.Comment: 6 pages, 4 figures, accepted for publication in A&

    The Cellular Prion Protein Interacts with the Tissue Non-Specific Alkaline Phosphatase in Membrane Microdomains of Bioaminergic Neuronal Cells

    Get PDF
    BACKGROUND: The cellular prion protein, PrP(C), is GPI anchored and abundant in lipid rafts. The absolute requirement of PrP(C) in neurodegeneration associated to prion diseases is well established. However, the function of this ubiquitous protein is still puzzling. Our previous work using the 1C11 neuronal model, provided evidence that PrP(C) acts as a cell surface receptor. Besides a ubiquitous signaling function of PrP(C), we have described a neuronal specificity pointing to a role of PrP(C) in neuronal homeostasis. 1C11 cells, upon appropriate induction, engage into neuronal differentiation programs, giving rise either to serotonergic (1C11(5-HT)) or noradrenergic (1C11(NE)) derivatives. METHODOLOGY/PRINCIPAL FINDINGS: The neuronal specificity of PrP(C) signaling prompted us to search for PrP(C) partners in 1C11-derived bioaminergic neuronal cells. We show here by immunoprecipitation an association of PrP(C) with an 80 kDa protein identified by mass spectrometry as the tissue non-specific alkaline phosphatase (TNAP). This interaction occurs in lipid rafts and is restricted to 1C11-derived neuronal progenies. Our data indicate that TNAP is implemented during the differentiation programs of 1C11(5-HT) and 1C11(NE) cells and is active at their cell surface. Noteworthy, TNAP may contribute to the regulation of serotonin or catecholamine synthesis in 1C11(5-HT) and 1C11(NE) bioaminergic cells by controlling pyridoxal phosphate levels. Finally, TNAP activity is shown to modulate the phosphorylation status of laminin and thereby its interaction with PrP. CONCLUSION/SIGNIFICANCE: The identification of a novel PrP(C) partner in lipid rafts of neuronal cells favors the idea of a role of PrP in multiple functions. Because PrP(C) and laminin functionally interact to support neuronal differentiation and memory consolidation, our findings introduce TNAP as a functional protagonist in the PrP(C)-laminin interplay. The partnership between TNAP and PrP(C) in neuronal cells may provide new clues as to the neurospecificity of PrP(C) function

    NON-PETROLEUM-BASED BINDERS FOR PAVING APPLICATIONS: RHEOLOGICAL AND CHEMICAL INVESTIGATION ON AGEING EFFECTS

    Get PDF
    The massive exploitation of non-renewable natural resources which has taken place in the last decade has led to significant global environmental concerns. In such a context, the use of non-petroleum-based binders for the construction of bound layers of flexible pavements can represent an effective solution to limit crude oil depletion. The research work presented in this paper focused on the effects of ageing on the rheological and chemical characteristics of a non-bituminous binder, indicated in the study as a “biobinder”, and a traditional neat bitumen selected as a reference material. Binders were analyzed in four ageing conditions obtained by making use of the Rolling Thin Film Oven and of the Pressure Ageing Vessel. Rheological behaviour of binders was investigated by means of oscillatory tests carried out in a wide range of temperatures and frequencies with a dynamic shear rheometer. Chemical structure was explored via Thin Layer Chromatographic analyses and Fourier Transform Infrared Spectroscopy. The experimental work demonstrated that mechanisms of ageing which are involved in biobinders completely differ from those experienced by petroleum-based binders. Concerns were expressed with respect to the applicability to non-conventional binders of currently available ageing techniques and of chemical characterization methods

    The VLT/NaCo Large program to probe the occurrence of exoplanets and brown dwarfs in wide orbits: I- Sample definition and characterization

    Get PDF
    Young, nearby stars are ideal targets to search for planets using the direct imaging technique. The determination of stellar parameters is crucial for the interpretation of imaging survey results particularly since the luminosity of substellar objects has a strong dependence on system age. We have conducted a large program with NaCo at the VLT in order to search for planets and brown dwarfs in wide orbits around 86 stars. A large fraction of the targets observed with NaCo were poorly investigated in the literature. We performed a study to characterize the fundamental properties (age, distance, mass) of the stars in our sample. To improve target age determinations, we compiled and analyzed a complete set of age diagnostics. We measured spectroscopic parameters and age diagnostics using dedicated observations acquired with FEROS and CORALIE spectrographs at La Silla Observatory. We also made extensive use of archival spectroscopic data and results available in the literature. Additionally, we exploited photometric time-series, available in ASAS and Super-WASP archives, to derive rotation period for a large fraction of our program stars. We provided updated characterization of all the targets observed in the VLT NaCo Large program, a survey designed to probe the occurrence of exoplanets and brown dwarfs in wide orbits. The median distance and age of our program stars are 64 pc and 100 Myr, respectively. Nearly all the stars have masses between 0.70 and 1.50sun, with a median value of 1.01 Msun. The typical metallicity is close to solar, with a dispersion that is smaller than that of samples usually observed in radial velocity surveys. Several stars are confirmed or proposed here to be members of nearby young moving groups. Eight spectroscopic binaries are identified.Comment: 64 pages with Appendix, 15 figures, accepted to A&

    Can gas in young debris disks be constrained by their radial brightness profiles?

    Full text link
    Disks around young stars are known to evolve from optically thick, gas-dominated protoplanetary disks to optically thin, almost gas-free debris disks. It is thought that the primordial gas is largely removed at ages of ~10 Myr, but it is difficult to discern the true gas densities from gas observations. This suggests using observations of dust: it has been argued that gas, if present with higher densities, would lead to flatter radial profiles of the dust density and surface brightness than those actually observed. However, here we show that these profiles are surprisingly insensitive to variation of the parameters of a central star, location of the dust-producing planetesimal belt, dustiness of the disk and - most importantly - the parameters of the ambient gas. This result holds for a wide range of gas densities (three orders of magnitude), for different radial distributions of the gas temperature, and different gas compositions. The brightness profile slopes of -3...-4 we find are the same that were theoretically found for gas-free debris disks, and they are the same as actually retrieved from observations of many debris disks. Our specific results for three young (10-30 Myr old), spatially resolved, edge-on debris disks (beta Pic, HD 32297, and AU Mic) show that the observed radial profiles of the surface brightness do not pose any stringent constraints on the gas component of the disk. We cannot exclude that outer parts of the systems may have retained substantial amounts of primordial gas which is not evident in the gas observations (e.g. as much as 50 Earth masses for beta Pic). However, the possibility that gas, most likely secondary, is only present in little to moderate amounts, as deduced from gas detections (e.g. ~0.05 Earth masses in the beta Pic disk), remains open, too.Comment: Accepted for publication in Astronomy and Astrophysic
    • 

    corecore