267 research outputs found

    Array of Horns Fed by a Transverse Slotted Groove Gap Waveguide at 28 GHz

    Get PDF
    This article belongs to the Section Physical Sensors.An array of low profile horns fed by transverse slots on a groove gap waveguide (GGWG) is presented. The GGWG is implemented with glide symmetrical holes and the design frequency is 28 GHz. The low profile horns are integrated in the same waveguide wall as the slots. The designed antenna is a linear array of these horns but the solution can be easily extended to a planar array. Experimental results support this work. The designed antenna is a good candidate for applications related to 5G technologies where medium to high gains as well as high efficiencies are required and reasonable manufacturing costs are demanded.This work has been supported by the Ministry of Science and Technology of Taiwan: Grant Nos. 109-2634-F-009-030 and 107-2221-E-009-051-MY2 and by the Spanish Ministry of Economy under projects TEC2016-79700-C2-2-R and PID2019-107688RB-C21

    Design of a Planar Array of Low Profile Horns at 28 GHz

    Get PDF
    This article belongs to the Section Physical SensorsA planar array of low profile horns fed by a transverse slotted waveguide array in the low millimeter-wave regime (28 GHz) is presented. The array of transverse slots cannot be directly used as antenna as it has grating lobes due to the fact that slot elements must be spaced a guided wavelength. However, these slots can be transformed into low profile horns that with their radiation patterns attenuate the grating lobes. To this aim, low profile horns with less than 0.6λ0 height were designed. The horns include a couple of chips that contribute to further reduce the grating lobes especially in the H-plane. The good performance of the designed array was demonstrated by both simulations and experiments performed on a manufactured prototype. A 5 × 5 array was designed that has a measured realized gain of 26.6 dBi with a bandwidth below 2%, still useful for some applications such as some radar systems. The total electrical size of the array is 6.63λ0× 6.63λ0. The radiation efficiency is very high and the aperture efficiency is above 80%. This all-metal solution is advantageous for millimeter-wave applications where losses sustained by dielectric materials become severe and it can be easily scaled to higher frequencies.This work was partially supported by the "Center for mmWave Smart Radar Systems and Technologies" under the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan and partially supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant numbers MOST 107-3017-F-009-001 and 107-2221-E-009-051-MY2. This work was also partially supported by the Spanish Government with grant numbers: TEC2016-79700-C2-2-R and PID2019-107688RB-C21

    Enhancing the efficiency of compact patch antennas composed of split ring resonators by using lumped capacitors

    Get PDF
    A new type of small patch antenna with low profile and enhanced radiation efficiency is proposed in this letter. The antenna is realized with a double layer of low-permittivity material (polypropylene, εr = 2.2). The lower layer is used for the feeding of the antenna, and split ring resonators (SRRs) are printed on top of the upper layer acting as radiating elements. The compactness is provided by shorting the rings to the ground plane with two metal pins. Although this antenna presented initially a dual band of operation, it has been demonstrated how the use of a lumped capacitor in the inner ring can increase the total radiation efficiency of the antenna performing a single-band response. Therefore, when the two original operation frequency bands coincide, a manufactured prototype of the antenna demonstrated a measured radiation efficiency of 73% that can be provided at the operation frequency of 1.29 GHz

    Evaluating assumptions of scales for subjective assessment of thermal environments – Do laypersons perceive them the way, we researchers believe?

    Get PDF
    International audienc

    A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features

    Get PDF
    We report a genome-wide association scan in over 6,000 Latin Americans for features of scalp hair (shape, colour, greying, balding) and facial hair (beard thickness, monobrow, eyebrow thickness). We found 18 signals of association reaching genome-wide significance (P values 5 × 10−8 to 3 × 10−119), including 10 novel associations. These include novel loci for scalp hair shape and balding, and the first reported loci for hair greying, monobrow, eyebrow and beard thickness. A newly identified locus influencing hair shape includes a Q30R substitution in the Protease Serine S1 family member 53 (PRSS53). We demonstrate that this enzyme is highly expressed in the hair follicle, especially the inner root sheath, and that the Q30R substitution affects enzyme processing and secretion. The genome regions associated with hair features are enriched for signals of selection, consistent with proposals regarding the evolution of human hair

    Revealing the nature of morphological changes in carbon nanotube-polymer saturable absorber under high-power laser irradiation

    Get PDF
    Composites of single-walled carbon nanotubes (SWNTs) and water-soluble polymers (WSP) are the focus of significant worldwide research due to a number of applications in biotechnology and photonics, particularly for ultrashort pulse generation. Despite the unique possibility of constructing non-linear optical SWNT-WSP composites with controlled optical properties, their thermal degradation threshold and limit of operational power remain unexplored. In this study, we discover the nature of the SWNT-polyvinyl alcohol (PVA) film thermal degradation and evaluate the modification of the composite properties under continuous high-power ultrashort pulse laser operation. Using high-precision optical microscopy and micro-Raman spectroscopy, we have examined SWNT-PVA films before and after continuous laser radiation exposure (up to 40 hours) with a maximum optical fluence of 2.3 mJ·cm−2. We demonstrate that high-intensity laser radiation results in measurable changes in the composition and morphology of the SWNT-PVA film due to efficient heat transfer from SWNTs to the polymer matrix. The saturable absorber modification does not affect the laser operational performance. We anticipate our work to be a starting point for more sophisticated research aimed at the enhancement of SWNT-PVA films fabrication for their operation as reliable saturable absorbers in high-power ultrafast lasers

    Titin-truncating variants affect heart function in disease cohorts and the general population

    Get PDF
    Titin-truncating variants (TTNtv) commonly cause dilated cardiomyopathy (DCM). TTNtv are also encountered in ~1% of the general population, where they may be silent, perhaps reflecting allelic factors. To better understand TTNtv, we integrated TTN allelic series, cardiac imaging and genomic data in humans and studied rat models with disparate TTNtv. In patients with DCM, TTNtv throughout titin were significantly associated with DCM. Ribosomal profiling in rat showed the translational footprint of premature stop codons in Ttn, TTNtv-position-independent nonsense-mediated degradation of the mutant allele and a signature of perturbed cardiac metabolism. Heart physiology in rats with TTNtv was unremarkable at baseline but became impaired during cardiac stress. In healthy humans, machine-learning-based analysis of high-resolution cardiac imaging showed TTNtv to be associated with eccentric cardiac remodeling. These data show that TTNtv have molecular and physiological effects on the heart across species, with a continuum of expressivity in health and disease

    Metagenomics - a guide from sampling to data analysis

    Get PDF
    Metagenomics applies a suite of genomic technologies and bioinformatics tools to directly access the genetic content of entire communities of organisms. The field of metagenomics has been responsible for substantial advances in microbial ecology, evolution, and diversity over the past 5 to 10 years, and many research laboratories are actively engaged in it now. With the growing numbers of activities also comes a plethora of methodological knowledge and expertise that should guide future developments in the field. This review summarizes the current opinions in metagenomics, and provides practical guidance and advice on sample processing, sequencing technology, assembly, binning, annotation, experimental design, statistical analysis, data storage, and data sharing. As more metagenomic datasets are generated, the availability of standardized procedures and shared data storage and analysis becomes increasingly important to ensure that output of individual projects can be assessed and compared

    Evaluating assumptions of scales for subjective assessment of thermal environments – Do laypersons perceive them the way, we researchers believe?

    Get PDF
    People's subjective response to any thermal environment is commonly investigated by using rating scales describing the degree of thermal sensation, comfort, and acceptability. Subsequent analyses of results collected in this way rely on the assumption that specific distances between verbal anchors placed on the scale exist and that relationships between verbal anchors from different dimensions that are assessed (e.g. thermal sensation and comfort) do not change. Another inherent assumption is that such scales are independent of the context in which they are used (climate zone, season, etc.). Despite their use worldwide, there is indication that contextual differences influence the way the scales are perceived and therefore question the reliability of the scales’ interpretation. To address this issue, a large international collaborative questionnaire study was conducted in 26 countries, using 21 different languages, which led to a dataset of 8225 questionnaires. Results, analysed by means of robust statistical techniques, revealed that only a subset of the responses are in accordance with the mentioned assumptions. Significant differences appeared between groups of participants in their perception of the scales, both in relation to distances of the anchors and relationships between scales. It was also found that respondents’ interpretations of scales changed with contextual factors, such as climate, season, and language. These findings highlight the need to carefully consider context-dependent factors in interpreting and reporting results from thermal comfort studies or post-occupancy evaluations, as well as to revisit the use of rating scales and the analysis methods used in thermal comfort studies to improve their reliability
    corecore