208 research outputs found

    Fracture detection from water saturation log data using a Fourier-wavelet approach

    Get PDF
    Fracture detection as applied to reservoir characterization is a key step towards modeling of fracturedreservoirs. While different methods have been proposed for detection and characterization of fractures and fractured zones, each is associated with certain shortcomings that prevent from their full use in different related engineering application environments. In this paper a new method is proposed for detection of fractured zones and fracture density in which water saturation log data is utilized. For detection of fractures, we have used wavelet transform and properties of wavelets that are highly suitable for detection of changes and local features of data. To choose the optimum mother wavelet, we have used energy matching strategy in which a wavelet with the highest energy match between spectral energy of the signal at the dominant frequency band and the coefficient energy at the same band of wavelet decomposition of the signal is selected. We have used wavelet packet for a more narrow frequency band selection and enhanced results. Decomposing the water saturation data using wavelets showed that the majority of information of theoriginal log is hidden at low frequency bands. As a result, approximated section of wavelet transform of data was used for fracture detection, while shale volume (or gamma ray) log data was used to filter part of the errors in prediction and identification of the uncertain zones. This increased the accuracy of the results by 70%. Finally, a linear relation was derived between energy of approximated section of water saturation log and fracture density, allowing us to estimate the number of fractures in each fractured zone. The method was applied to four wells belonging to one of the Iranian oilfields located in the southwest region of the country and the results are promising. The use of large volume of data and the subsequent analysis increased the generalization ability of the proposed method

    Variability in gene cassette patterns of class 1 and 2 integrons associated with multi drug resistance patterns in Staphylococcus aureus clinical isolates in Tehran-Iran

    Get PDF
    Background: To investigate antibiotic resistance, the occurrence and distribution of class 1 and 2 integrons in multidrug- resistant Staphylococcus aureus isolates from hospitals in Tehran, Iran. The isolates were examined for susceptibility to antimicrobial agents. The mecA gene, class 1 and 2 integrons were detected by PCR. Integrase positive strains were further analysed for the presence of resistance gene cassettes using specific primers and were sequenced. Results: Among 139S.aureus isolates, 109 (78.4 ) and 112 (80.5 ) strains were considered as multidrug resistant and mecA positive, respectively. Class 1 integrons and internal variable regions were found in 72.6 (101/139) and 97 (98/101) and class 2 integrons and variable regions also in 35.2 (49/139) and 65.3 (32/49) of S.aureus clinical isolates, respectively. Twelve distinct cassette arrays were found, containing genes encoding resistance to β-lactams, aminoglycosides, streptothricin, trimethoprim, chloramphenicol,a putative glucose dehydrogenase precursor and a protein with unknown function. Gene cassette arrays aadB, aadA2 and dhfrA1-sat2-aadA1 were common in S.aureus isolates. We detected a completely new gene cassettes which contained aadB, oxa2, aacA4, orfD-aacA4-catB8, aadB-catB3, orfD-aacA4 and aadB-aadA1-cmlA6 of class 1 and dhfrA1-sat2-aadA1, dhfrA11, dhfrA1-sat2 of class 2 integrons. Conclusions: This is the first study to report carriage of class 1 and 2 integrons and associated gene cassettes among in S.aureus isolates from Iran. © 2015 Mostafa et al

    Biallelic UBE4A loss-of-function variants cause intellectual disability and global developmental delay

    Get PDF
    Purpose: To identify novel genes associated with intellectual disability (ID) in four unrelated families. Methods: Here, through exome sequencing and international collaboration, we report eight individuals from four unrelated families of diverse geographic origin with biallelic loss-of-function variants in UBE4A. Results: Eight evaluated individuals presented with syndromic intellectual disability and global developmental delay. Other clinical features included hypotonia, short stature, seizures, and behavior disorder. Characteristic features were appreciated in some individuals but not all; in some cases, features became more apparent with age. We demonstrated that UBE4A loss-of-function variants reduced RNA expression and protein levels in clinical samples. Mice generated to mimic patient-specific Ube4a loss-of-function variant exhibited muscular and neurological/behavioral abnormalities, some of which are suggestive of the clinical abnormalities seen in the affected individuals. Conclusion: These data indicate that biallelic loss-of-function variants in UBE4A cause a novel intellectual disability syndrome, suggesting that UBE4A enzyme activity is required for normal development and neurological function

    GABA Maintains the Proliferation of Progenitors in the Developing Chick Ciliary Marginal Zone and Non-Pigmented Ciliary Epithelium

    Get PDF
    GABA is more than the main inhibitory neurotransmitter found in the adult CNS. Several studies have shown that GABA regulates the proliferation of progenitor and stem cells. This work examined the effects of the GABAA receptor system on the proliferation of retinal progenitors and non-pigmented ciliary epithelial (NPE) cells. qRT-PCR and whole-cell patch-clamp electrophysiology were used to characterize the GABAA receptor system. To quantify the effects on proliferation by GABAA receptor agonists and antagonists, incorporation of thymidine analogues was used. The results showed that the NPE cells express functional extrasynaptic GABAA receptors with tonic properties and that low concentration of GABA is required for a baseline level of proliferation. Antagonists of the GABAA receptors decreased the proliferation of dissociated E12 NPE cells. Bicuculline also had effects on progenitor cell proliferation in intact E8 and E12 developing retina. The NPE cells had low levels of the Cl–transporter KCC2 compared to the mature retina, suggesting a depolarising role for the GABAA receptors. Treatment with KCl, which is known to depolarise membranes, prevented some of the decreased proliferation caused by inhibition of the GABAA receptors. This supported the depolarising role for the GABAA receptors. Inhibition of L-type voltage-gated Ca2+ channels (VGCCs) reduced the proliferation in the same way as inhibition of the GABAA receptors. Inhibition of the channels increased the expression of the cyclin-dependent kinase inhibitor p27KIP1, along with the reduced proliferation. These results are consistent with that when the membrane potential indirectly regulates cell proliferation with hyperpolarisation of the membrane potential resulting in decreased cell division. The increased expression of p27KIP1 after inhibition of either the GABAA receptors or the L-type VGCCs suggests a link between the GABAA receptors, membrane potential, and intracellular Ca2+ in regulating the cell cycle

    Identification of genetic elements in metabolism by high-throughput mouse phenotyping.

    Get PDF
    Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome

    In the Absence of Sonic Hedgehog, p53 Induces Apoptosis and Inhibits Retinal Cell Proliferation, Cell-Cycle Exit and Differentiation in Zebrafish

    Get PDF
    Background: Sonic hedgehog (Shh) signaling regulates cell proliferation during vertebrate development via induction of cell-cycle regulator gene expression or activation of other signalling pathways, prevents cell death by an as yet unclear mechanism and is required for differentiation of retinal cell types. Thus, an unsolved question is how the same signalling molecule can regulate such distinct cell processes as proliferation, cell survival and differentiation. Methodology/Principal Findings: Analysis of the zebrafish shh 2/2 mutant revealed that in this context p53 mediates elevated apoptosis during nervous system and retina development and interferes with retinal proliferation and differentiation. While in shh 2/2 mutants there is activation of p53 target genes and p53-mediated apoptosis, an increase in Hedgehog (Hh) signalling by over-expression of dominant-negative Protein Kinase A strongly decreased p53 target gene expression and apoptosis levels in shh 2/2 mutants. Using a novel p53 reporter transgene, I confirm that p53 is active in tissues that require Shh for cell survival. Proliferation assays revealed that loss of p53 can rescue normal cell-cycle exit and the mitotic indices in the shh 2/2 mutant retina at 24, 36 and 48 hpf. Moreover, generation of amacrine cells and photoreceptors was strongly enhanced in the double p53 2/2 shh 2/2 mutant retina suggesting the effect of p53 on retinal differentiation. Conclusions: Loss of Shh signalling leads to the p53-dependent apoptosis in the developing nervous system and retina

    Wetlands for wastewater treatment and subsequent recycling of treated effluent : a review

    Get PDF
    Due to water scarcity challenges around the world, it is essential to think about non-conventional water resources to address the increased demand in clean freshwater. Environmental and public health problems may result from insufficient provision of sanitation and wastewater disposal facilities. Because of this, wastewater treatment and recycling methods will be vital to provide sufficient freshwater in the coming decades, since water resources are limited and more than 70% of water are consumed for irrigation purposes. Therefore, the application of treated wastewater for agricultural irrigation has much potential, especially when incorporating the reuse of nutrients like nitrogen and phosphorous, which are essential for plant production. Among the current treatment technologies applied in urban wastewater reuse for irrigation, wetlands were concluded to be the one of the most suitable ones in terms of pollutant removal and have advantages due to both low maintenance costs and required energy. Wetland behavior and efficiency concerning wastewater treatment is mainly linked to macrophyte composition, substrate, hydrology, surface loading rate, influent feeding mode, microorganism availability, and temperature. Constructed wetlands are very effective in removing organics and suspended solids, whereas the removal of nitrogen is relatively low, but could be improved by using a combination of various types of constructed wetlands meeting the irrigation reuse standards. The removal of phosphorus is usually low, unless special media with high sorption capacity are used. Pathogen removal from wetland effluent to meet irrigation reuse standards is a challenge unless supplementary lagoons or hybrid wetland systems are used
    corecore