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Fracture detection as applied to reservoir characterization is a key step towards modeling of fractured
reservoirs. While different methods have been proposed for detection and characterization of fractures and
fractured zones, each is associated with certain shortcomings that prevent from their full use in different
related engineering application environments. In this paper a new method is proposed for detection of
fractured zones and fracture density in which water saturation log data is utilized. For detection of fractures,
we have used wavelet transform and properties of wavelets that are highly suitable for detection of changes
and local features of data. To choose the optimum mother wavelet, we have used energy matching strategy
in which a wavelet with the highest energy match between spectral energy of the signal at the dominant
frequency band and the coefficient energy at the same band of wavelet decomposition of the signal is
selected. We have used wavelet packet for a more narrow frequency band selection and enhanced results.
Decomposing the water saturation data using wavelets showed that the majority of information of the
original log is hidden at low frequency bands. As a result, approximated section of wavelet transform of data
was used for fracture detection, while shale volume (or gamma ray) log data was used to filter part of the
errors in prediction and identification of the uncertain zones. This increased the accuracy of the results by
70%. Finally, a linear relation was derived between energy of approximated section of water saturation log
and fracture density, allowing us to estimate the number of fractures in each fractured zone. The method was
applied to four wells belonging to one of the Iranian oilfields located in the southwest region of the country
and the results are promising. The use of large volume of data and the subsequent analysis increased the
generalization ability of the proposed method.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Fractures may influence the behaviour of fractured reservoirs such
as the fluid flow and production. Therefore in modeling fractured
reservoirs understanding fracture properties is important especially
in fractured Carbonate reservoirs (Roehl and Choduette, 1985).
Fractures can be detected in both direct and indirect manners using
seismic sections, petrophysical logs, well tests, well mud loss history

and core description (Schlumberger Log Interpretation Principles/
Applications, 1998; Thompson, 2000; Nelson, 2001; Martinez-Torres,
2002; Dutta et al., 2007). However, each of these methods is subjected
to some limitations in their use.

Since mid 1980 with the introducing the dipmeter technology as
well as image logs the process of fracture detection and character-
ization of fracture properties such as dip, dip direction, opening, filling
etc has become less problematic (Serra, 1989). Having high resolution
data acquisition devices, these tools can detect low scale variations.
This may lead us to this conclusion that fractures can be fully detected
using image logs. However, it is important to note that at the moment
there exist other modes to acquire logs data and image data are not
the sole source to recover the fractures. This is firstly because it is a
recently developed technology which had been made available to the
industry around a decade ago and therefore no image log is available
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for wells drilled prior to this period. Secondly, it is a very expensive
technology as compared with the costs associated with normal well
logging system and hence it is not a common practice to run image
logs in every single well drilled.

As modeling the fractures in a reservoir with inadequate volume of
data could lead to a misleading interpretation, any direct or indirect
technique which may increase our knowledge about the fracture
properties is highly valuable. It is important to note that in general
fracture modeling is an object based practice which requires larger
amount of data comparing to that of pixel based modeling.

Earlier attempts to detect fractures in fractured reservoir include the
sonic waves used by Hsu et al. (1987) to study the dip and hydraulic
conductivity of fluid through fractures. Flavio and Gregor (1999) used a
combined well log called velocity deviation log to study the reservoir
properties including fractures. Daiguii et al. (1997) attempted to detect
the faults crossing the reservoirs by applying wavelet transform to
seismic data. Song et al. (1998) used core data and conventional logs to
increase the ability of distinguishing between natural fractures and

drilling induced fractures from image logs. Behrens et al. (1998)
attempted to detect fractures from seismic data.

Sahimi and Hashemi (2001) applied wavelet transform on
porosity log and suggested that high frequency variations correspond
to fractures. To validate themodel they used permeability log, where a
large increase in permeability corresponds to the existence of a
fracture. Surjaatmadja et al. (2002) used a frequency decomposition
approach to analyse downhole data to detect possible fractures.
Martinez-Torres (2002) investigated the use of fuzzy logic of various
petrophysical logs for fracture detection. Tran (2004) used classifica-
tion algorithm to study and detect the fractures.

Dutta et al. (2007) by analysing shear waves identified fault zones.
Mohebbi et al. (2007) applied wavelet transform on some logs to
detect fractures. Ozkaya and Siyabi (2008) used factor analysis for
detecting open fractures near faults and find that mud loss is the best
parameter by which such fractures could be detected.

The studyof fractures fall into twomajor categories: a)usingnumber
of data resources to detect the fractures; or b) decomposing the data

Fig. 1. Fourier transform of water saturation log in one of the studied wells a) over total frequency band and b) at frequencies 0 to 500 Hz.
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using mathematical approaches such as wavelet to identify the
fractures. The general difficulty attached to both approaches is the
lack of adequate volume of data and being unable to identify the
accuracy of themethod used due to the lack of image logs for calibration
purposes. More importantly as the data is inadequate it is impractical to
study thepossibility of generalizationof the results even tonearbywells.

In this paper we use a wavelet technique to decompose the water
saturation log to detect fractures. Gamma ray log is used to filter the
errors and the results are calibrated against image logs. This has been
applied to four wells in one of the oilfields in the southwest of Iran
where the sequence of fractured zones with variable fracture density
together with intact formation is observed. The results were
promising and finally a linear correlation was found between signal
energy of water saturation log in fractured zones and the number of
fractures. This correlation can be used to determine number of frac-
tures from water saturation log. This work is unique comparing to its
similar works in terms of large volume of data used in the analysis
which enabled us not only to check the accuracy of the method but
also to study the possibility of its generalization.

2. Wavelet transformer characteristics

A 1D wavelet has to be used for this study, as the water saturation
log shows the formation characteristics that lie along the formations
in vertical direction towards depth. A discrete wavelet transformer

(DWT) of a signal x(z) as defined below (Daubechies, 1988; Mallat,
1989)

DWTψ
x ðτ; sÞ =

1ffiffiffiffiffiffiffijs jp ∫xðzÞψ z−τ
s

� �
dz ð1Þ

transforms signal x(z) using mother wavelet ψ(z) from depth domain
(z) to translation (τ) and scale (s) domain. In Eq. (1), z−τ is the
depth translation. The term 1 =

ffiffiffiffiffiffiffijs jp
is the normalization factor and

removes the scale effect fromwavelets with different scales. Note that
s=1 / f, where f is the frequency (which in this paper corresponds to
variability of the studied log) and is directly proportional to the width
of the window function, which is to say that mother wavelet carries
the characteristics of window function. An increase in scale s (i.e.
smaller frequency) corresponds to a larger window being analysed,
which reduces the ability in depth resolution but increases the
frequency resolution ability. Therefore by increasing the scale, smaller
frequency bands are detected and resolution efficiency in frequency
domain increases whereas this ability reduces in depth domain.

In this research signal energymatching algorithm is used to choose
the optimummother wavelet in order to analyse the water saturation
log, where the signal is firstly transformed from depth–wavelength
domain to frequency–wavelength using a Fourier transformer to
detect the dominant frequencies. Then the signal is analysed using
different mother wavelets. To choose the optimum mother wavelet,
we have used energy matching strategy in which a wavelet with the
highest energy match between spectral energy of the signal at the
dominant frequency band and the coefficient energy at the same band
is selected.We have usedwavelet packet for amore narrow frequency
band selection and enhanced results (Burrus et al., 1997).

In Fig. 1(a) the water saturation log corresponding to one of the
studied wells is shown. As is seen from this figure the majority of
signal energy resides at low frequencies. As a result and based on
signal energy matching strategy the proper mother wavelet should be
sought for using wavelet transform coefficients at low frequencies.

Although it is believed that the wavelet transform leads to
satisfactory results, in order to increase the certainty in choosing the
proper mother wavelet, wavelet packet transform is used in this study.
This is advantageous as the wavelet packet transform is flexible in
choosing the frequencybandswhichare inbetter agreementwith signal
energy. Also, to increase the accuracy in calculating signal energy the

Table 1
SSE for water saturation log corresponding to Fourier andmother wavelets in four wells
under study.

Wavelet groups db coif bior rbio sym Dmey

Well 1 Mother
wavelet

db-1 db-10 coif-5 bior-6.8 rbio-6.8 sym-7 Dmey

SSE 229.25 17.82 10.16 72.54 69.89 67.09 112.27
Well 2 Mother

wavelet
db-1 db-10 coif-2 bior-4.4 rbio-1.5 sym-5 Dmey

SSE 67.24 17.75 17.46 15.21 15.67 22.26 27.26
Well 3 Mother

wavelet
db-1 db-4 coif-1 bior-4.4 rbio-1.5 sym-6 Dmey

SSE 65.56 22.79 24.16 8.55 8.07 9.16 35.67
Well 4 Mother

wavelet
db-1 db-3 coif-1 bior-4.4 rbio-1.3 sym-4 Dmey

SSE 53.43 26.78 19.53 18.67 13.16 13.67 26.2

Fig. 2. Wavelet and scaling functions of optimum mother wavelets used to analyse water saturation logs in a) well 1 (coif-5) and b) well 4 (rbio-1.3).
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white noise has been reduced. In Fig. 1(b) the corresponding Fourier
transform is shown in the frequency range of 0 to 500 Hz.

To choose the optimum mother wavelet, the Fourier transform of
water saturation log in all 4 wells was acquired and the dominant
frequencies were analysed. As it is seen from Fig. 1 majority of signal
energy is hidden in low frequency bands. To arrive at a more focused
energymatching results, it was decided to decompose signals up to seven
levels using wavelet packet and in this way optimum frequency bands
corresponding to more accurate signal energy were chosen. As an

example, in Fig. 1 eight frequency bands of 1–30, 31–60 and up to 211–
240 were selected. The energy of the hidden signals in these eight bands
was calculated using Fourier andwavelet packet transforms and defining
the difference between them as a measure of error, the sum of square
error (SSE) as shown in the Table 1 was obtained. For instance, in Table 1
SSE is given for four of these wells. From this table it is seen that different
mother wavelets are available to be used for decomposition of water
saturation in four wells in one field, however for each well different
mother wavelets from anymotherwavelets family found to be optimum.
For comparison, the performance of mother wavelet db1 in four wells are
given, which indicates that the performance of this mother wavelet in all
wells isweaker as comparedwith that of optimummotherwavelets using
differentwavelets. It is also seen that to analyse thewater saturation log in
eachwell the optimummotherwavelet should be nominated. Forwells 1
to 4 shown in Table 1 the chosen optimum mother wavelets are coif-5,
rbio-1.3,bior-4.4 and rbio-1.5, respectively. In Fig. 2(a) and (b)wavelet and
scaling functions corresponding to coif-5 and rbio-1.3 are shown.

3. Water saturation response to fractures

Water saturation is defined as the ratio of water to formation fluid.
Archie equation as the most commonly used method to calculate
water saturation is used here which is written as (Schlumberger Log
Interpretation Principles/Applications, 1998):

Snw =
FRw

Rt
ð2Þ

Table 2
Signal energy percentage of water saturation log at low frequencies in four wells under
study.

Well 1Frequency
range (Hz)

1–30 31–
60

61–
90

91–
120

121–
150

151–
180

181–
210

211–
240

1–
240

Signal
energy (%)

93.44 1.34 1.67 1.06 0.54 0.29 0.44 0.19 98.98

Well
2

Frequency
range (Hz)

1–24 25–
48

49–
72

73–
96

97–
120

121–
144

145–
165

166–
187

1–
187

Signal
energy (%)

98.47 0.46 0.22 0.24 0.16 0.12 0.05 0.07 99.78

Well
3

Frequency
range (Hz)

1–14 15–
28

29–
42

43–
56

57–
70

71–
82

83–
96

97–
110

1–
110

Signal
energy (%)

96.95 1.01 0.27 0.29 0.31 0.12 0.15 0.24 99.32

Well
4

Frequency
range (Hz)

1–19 20–
37

38–
56

57–
74

75–
93

94–
111

112–
129

130–
147

1–
147

Signal
energy (%)

95.84 1.22 0.56 0.35 0.35 0.40 0.16 0.18 99.07

Fig. 3. Decomposing water saturation log in well 2 using mother wavelet bior-4.4.
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where Sw is water saturation, F is the formation coefficient, Rw and Rt
are electrical resistivity of formation water and formation rock,
respectively. Power factor n=2 used in this research. Ro=FRw is the
electrical resistivity of a formationwhich is 100% saturatedwith water
with electrical resistivity of Rw.

Water saturation log is sensitive to fractures where a certain effect
is observed under fracture condition. Three reasons to support this
statement are given below:

a) In water wet reservoir rocks as the contact area between fluid and
rock increases, the amount of water increases accordingly, which
means that at fracture location the water saturation levels is
expected to be higher. The percentage of this increase depends on
fracture opening (aperture) so that an increase in fracture opening
(aperture) across hydrocarbon bearing section of the reservoir
causes a relatively lower increase in water saturation. Clearly, the
closed fractures do not show any response to water saturation.
Therefore it appears that water saturation could be potentially
used as ameans to separate open and closed fractures. This study is
carried out using data from a water wet reservoir formation.

b) If a water based mud is used in drilling, a part of water exists in
mud will penetrate through the open fractures and replaces
hydrocarbon, which results in an increase in water saturation
(Fathi et al., 2008). In order for maximum replacement to be taken
place about two days of time interval is required as concluded by
Fathi et al. (2008). As, in general, well logging is performed after
more than two days upon completion of drilling a section of a well,
it is not unrealistic to expect an increase in water saturation level
in open fractures. Again, this shows that water saturation is
potentially a useful parameter to distinguish between open and
closed fractures. In the reservoir under study here a water based
mud was used during drilling.

c) Water coning causes water saturation to become higher in upper
reservoir section. The reservoir studied here is producing for many
years now and thewells under study in this work have been drilled
recently. The reservoir is a fractured Carbonate reservoir and as
expected the fluid flow is mainly across fractures (Nelson, 2001)
which means larger water saturation in fractured zones.

4. Wavelet transform applied to water saturation log

Fourier transform was applied to water saturation logs belonging
to 4 wells as shown in Table 1. Different frequency bands are
considered to calculate the signal energy. The results are summarized

Fig. 4. Location of fractured zones on approximated section of signal in Fig. 3.

Table 3
Comparing water saturation against reservoir fractures in well 2.

Row Depth Thickness Resulta Row Depth Thickness Resulta Row Depth Thickness Resulta

(m) (m) (m) (m) (m)

1 2282–2286 5 + 11 2501–2507 7 + 21 2579–2606 28 +
2 2287–2296 10 FN 12 2508–2513 6 FP 22 2607–2609 3 FP
3 2297–2322 26 + 13 2514–2521 8 + 23 2610–2630 21 +
4 2323–2330 8 FN 14 2522–2529 8 FP 24 2631–2636 6 FN
5 2331–2357 27 + 15 2530–2536 7 + 25 2637–2655 19 +
6 2358–2362 5 FN 16 2537–2542 6 FP 26 2656–2660 5 FP
7 2363–2389 27 + 17 2543–2546 4 + 27 2661–2669 9 +
8 2390–2397 8 FN 18 2547–2561 15 FP 28 2670–2737 67 UN
9 2398–2493 96 + 19 2562–2567 6 +
10 2494–2500 7 FN 20 2568–2578 11 FP

a (+) correct answer, (FP) false positive error, (FN) false negative error, (UZ) uncertain zone.

Table 4
Fracture recovery results in well 2.

Type of error Corresponding depth Recovery

(m) (%)

No error 290 64
FP 54 12
FN 44 9
Uncertain 67 15
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in Table 2. From this table and also Fig. 1 it is seen that most of the
signal energy of water saturation log is hidden at low frequencies.

As in general the signal frequency varies between 0 and 2000 Hz in
all wells (see Fig. 1(a) for example), Table 2 leads to the conclusion
that more than 99% of the information is hidden in low frequency
bands (as seen in the most right column in Table 2). As an example, in
well 3, more than 99.3% of signal energy is hidden within frequencies
of 1–110 Hz (i.e. within about 5% of total frequency range).

Also in this well about 97% of signal energy is concentrated near zero
frequency. Thus, it is not advisable to search for the information from
water saturation log at high frequency, it is also certainly very difficult to
generalize these results to otherwells and careful attention is required. As

a result, in this research low frequency signals are used to study and
develop the correlation between fractures and water saturation. For this
reason wavelet approximation is utilized. In Fig. 3 water saturation log
corresponding to well 2 and its decomposed frequencies up to five levels
using mother wavelet bior-4.4 (the optimum mother wavelet for signal
processing in thiswell as seen inTable 1) is shown.As seen, in thisfigure it
is a reduction in signal frequency as we move from bottom to top.
Therefore d1 and a5 represent the maximum and minimum signal
frequencies (variations), respectively. As the majority of signal

Fig. 5. Approximated Sw and GR logs in well 2 analysed using mother wavelet bior-4.4
at level 5. Fractured zones and FP errors are shown.

Table 5
Non-fractured zones depth intervals in well 2 after applying GR filtering.

No. Depth interval Thickness No. Depth interval Thickness

(m) (m) (m) (m)

1 2282–2288 7 6 2542–2552 11a

2 2304–2319 16 7 2571–2578 8a

3 2372–2374 3a 8 2689–2696 8a

4 2516–2518 3a 9 2706–2709 4
5 2534–2538 5a 10 2717–2723 7a

a Intervals where filtering detected fractures correctly.

Fig. 6. Approximated Sw and GR logs in well 2 analysed using mother wavelet bior-4.4
at level 5. Fractured zones and FN errors are shown.

Table 6
Filtering uncertain zones to improve detecting fractured zones.

Zone category Detecting
fractured
zone

Shale
volume or
GR log
variation

Reservoir
zone

Definition
of
uncertain
zone

Uncertain Impossible Any Water
bearing

No
variation
in water
saturation
log

Non-fractured Possible No
variation

Hydrocarbon
bearing

Reduced shale volume or
GR coincide with fractured
zone and remaining
zones are non-fractured

Possible Variation
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information is hidden at low frequency bands, the fractured zones are
searchedat low frequencies (a5). The reservoir section is between2282 m
and 2737 m, i.e. the studied depth has a thickness of 455 m.

In Fig. 4 location of fractured zones has been mapped into signal
approximated section of water saturation log in well 2 (see Fig. 3). In
this figure also fracture density and number of fractures in each zone
are shown. From this figure, a reduction in water saturation is
observed from depth 2282 m to 2297 m; this is while the image log for
this well indicates this zone to be a fractured zone. The depth interval
of 2297 m to 2320 m corresponds to a fractured zone with an increase

in water saturation value. Again, across the next 10 m of the reservoir
where the formation is fractured, a reduction in water saturation is
seen. This concludes that although, in general, the fractured zones
correspond to increased water saturation there are situations where
this criterion cannot be validated; i.e. increase in water saturation in
non-fractured zones or reduction of water saturation in fractured
zones. In Table 3 a summary of this trend is shown onwater saturation
log in well 2. As discussed earlier two types of errors may happen; if
water saturation increases (positive response from log) but no
fractured zone exist (false interpretation), this is shown as false
positive (FP) error. Similarly false negative (FN) error stands for the
situation where water saturation reduces (negative response from
log) but fractured zone is observed (false interpretation).

It is important tomention that in this work single fractures, as seen
in Fig. 4, are not considered as fractured zones and therefore this
explains the disagreement between Fig. 4 and Table 3 at some depths.

Here, instead of having one single threshold for water saturation
along the total well depth, the variation in water saturation is
compared with some local threshold levels where each is set at
different depth interval and where water saturation values are
relatively similar.

From Table 3 it is found that using water saturation log the total of
290 m of fractured zones were detected across the total 455 m of
reservoir section, i.e. a recovery of 64%. The FP and FN errors account
for 12% (total depth of 54 m) and 9% (total depth of 44 m),
respectively. The method appears to be inefficient across the
remaining depth of 67 m (corresponding to 15% of the total depth),
which is at the lower depth of reservoir, as water saturation does not
show much variability in this zone. Table 4 summarizes the results.

Similar results were obtained for other wells in terms of recovery
performance for the fractured zones, which perhaps is indicative of
the applicability of the approach for the purpose of fracture detection.

5. Filtering the errors

To reduce the errors encountered in fracture detection approach
discussed in the previous section, other petrophysical logs are
proposed to be used as additional information sources to filter
different types of errors.

5.1. False positive (FP) error

This error occurs when water saturation increases across a section
but no fracture exists in reality, which is against the fundamental
concept adopted before. In this situation, an increase in water
saturation is due to other reasons which need to be investigated in
order to filter the FP type error.

In water wet reservoir formations a reduction in porosity or an
increase in capillary pressure could potentially lead to increasing
water saturation. Both of these could potentially happen in shale
formations simultaneously. Therefore the shale volume or gamma ray
(particularly Potassium) log appears to be an appropriate filter for FP

Fig. 7. Approximated Sw and GR logs in well 2 analysed using mother wavelet bior-4.4
at level 5. Fractured zones and uncertain zones are shown.

Table 7
Fracture recovery results in well 2 after filtering FP errors.

Row Depth Thickness Resulta Row Depth Thickness Resulta Row Depth Thickness Resulta

(m) (m) (m) (m) (m)

1 2282–2288 7 FE 8 2358–2362 5 FN 15 2610–2630 21 +
2 2289–2296 8 FN 9 2363–2389 27 + 16 2631–2636 6 FN
3 2297–2303 7 + 10 2390–2397 8 FN 17 2637–2655 19 +
4 2304–2319 16 FE 11 2398–2493 96 + 18 2656–2660 5 FP
5 2320–2322 3 + 12 2494–2500 7 FN 19 2661–2669 9 +
6 2323–2330 8 FN 13 2501–2606 106 + 20 2670–2737 67 UN
7 2331–2357 27 + 14 2607–2609 3 FP

a (+) correct answer, (FP) false positive error, (FN) false negative error, (UZ) uncertain zone, (FE) error due to filtering.
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type error. However, one may argue that in some shaly sections of
reservoir where it is also fractured, the shale volume or gamma ray
willfilter fractures too,which is in conflictwith our objective. Therefore,
only using such a filter, it is unlikely to achieve 100% recovery.

In Fig. 5, approximated section of water saturation and gamma ray
log at level 5 as decomposed using mother wavelet bior-4.4 as well as
location of fractured zones and position of FP errors are shown. In this
figure a threshold limit of 60% for gamma ray is defined which
excludes any zone with gamma ray greater than 60% from being
fractured. In this research the threshold limit found to be 25% and 60%
for shale volume and gamma ray logs respectively. In Table 5 non-
fractured zones, as determined after applying gamma ray filter, are
identified. As fractured zones are already known to us (from image
log) zones which are correctly categorized as fractured zones are
marked with a star sign. Both Table 5 and Fig. 5 indicate that the
applied method has filtered part of the fractured zone in the upper
section of the reservoir, as expected.

As is seen from Table 5, gamma ray filter (shale volume) resulted
in improving fracture detection in 50% of cases. More importantly,
correct filter response corresponds to, in general, FP errors or
uncertain zone of fractures extracted from water saturation log. This
is clearly seen from Fig. 5 where FP and uncertain zones correspond to
an increase in gamma ray log.

5.2. False negative (FN) error

This error occurs once a reduction in water saturation is observed
which is interpreted as an absence of fractured zone, but instead, it
should indicate otherwise i.e. a fractured zone exists (see Fig. 6). Here
we investigate the sources for these conflicting conclusions by
filtering FN error.

The source of FN error should be sought within the fracture
properties including filling, continuity, density and opening (aper-
ture). Other parameters such as the kind of host rock, reservoir
pressure and mud pressure, water saturation within studied portion,
production history and injection are some of the parameters that
could be a source for FN error and needs to be studied in this context.
In this study and based on the available data it was proven that the
host rock does not have significant influence on fractures in terms of
increasing water saturation and therefore will not be an appropriate
filter to be used. Only in interpretation of image log obtained from one
of the wells, fractures were classified into continuous and discontin-
uous groups where all FN errors coincide with discontinuous
fractures. Due to a limited number of cases observed as such, gener-
alizing this property as being a filter for FN errors could not be
justified.

As there was no information about the properties mentioned
above in the studied wells it was not practical to identify a filter for FN
errors and generalize it.

5.3. Uncertain zones

This zone corresponds to a part of the reservoir where the
variability in water saturation is low and discrimination of fractured
zones is practically impossible. From the trend of water saturation
changes in studied wells following statements may be drawn in terms
of factors important in forming the uncertain zone:

a) within water bearing zones of reservoir water saturation is not
altered with the presence of shale or fractured zone and generally
water saturation is high,

b) zones with no fracture and low variability in shale volume may
lead to the presence of uncertain zones; and

c) a zone across which an increase in water saturation, corresponding
to a fractured zone, is neutralised due to a reduction in shale
volume could be considered as an uncertain zone.

To filter the uncertain zone, based on the above statements,
following treatments may be employed:

a) if thewater saturation across the bottom section of reservoir is close
to 100% this could be used as an indication ofwater bearing zone and
as a result the presence of shale or fractured zone could not cause an
increase in water saturation. This leads to the conclusion that at this
section detecting the fractured zone using water saturation log is
impossible and thus this is an uncertain zone,

b) within the intervals during which no significant variation in shale
volume is observed, the water saturation log could show two
different behaviours. If water saturation log increases, which is
indicative of a potential fractured zone, this zone is not considered
as an uncertain zone anymore. However, if the water saturation
log does not show any variations this concludes that there was no
fractured zone causing the water saturation to increase, which
ultimately means that this is not an uncertain zone; and

c) in a zone across which variation in shale volume is observed but
water saturation does not change, most probably reduction in shale
volume corresponds to the presence of a fractured zone. Therefore, if
in a part of reservoir water saturation is constant but shale volume
varies, a reduction in shale volume could mean the existence of a
fractured zone. This is to say that this zone is not an uncertain zone.

Table 6 summarizes the process of filtering an uncertain zone.
In Fig. 7 the uncertain zone corresponding to well no. 2 is shown. It

can be seen that this zone is in the water bearing section of reservoir
and GR variation as well as presence of a fractured zone do not have a
significant effect on water saturation in a way that water saturation
remains 100%. Therefore, in this zone detection of a fractured zone is
impossible and this zone is in fact an uncertain zone.

6. Fractured zone detection after filtering errors

It was seen here that in the absence of sufficient information,
filtering FN error types could not be carried out. So, only sources for FP
errors as well as uncertain zones considered to filter the errors through
the process of fracture detection. As it was demonstrated, through the
filtering process the accuracy in fractured zone detectionwas increased.
For example, in Table 7 the final results of fracture detection after
filtering is shown forwell 2. It is important tonote that in thiswell, as the
uncertain zone is located within the water bearing section of reservoir,
filtering this zonewas practically impossible and hence in this well only
FP error type was reduced. In Table 8, final results of fractured zone
detection in well 2 are given. Comparing the results of this table with
those of Table 4, it is concluded that the accuracy of fracture detection
after filtering has increased by 5% and the recovery percentage has risen
up to 69% (from 64% as was the case before filtering).

7. Correlation between signal energy in fractured zone and
fracture frequency

As described above, applyingwavelet transform onwater saturation
log and subsequent filtering of some errors through GR log, it was
possible to identify the fractured zones. The accuracy of the method

Table 8
Fracture detection recovery after applying filters.

Error types Depth interval Recovery

(m) (%)

No error 315 69
FP 8 2
FN 42 9
Uncertain 67 15
Error due to filtering 23 5
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proved to be around 70%. The remaining unanswered question is that
how many single fractures exist in each fractured zone (fracture
frequency or density)? The answer is sought in a correlation analysis
between signal energy and fracture frequency (density).

In Table 9, fractured zones interval, number of fractures and the
signal energy in each fractured zones, as detected through this study,
are given. In this table zones corresponding to both FP and FN errors as
well as uncertain intervals were excluded and the results are limited
to the intervals corresponding to 70% accuracy.

In Fig. 8 the approximated section of water saturation log in well 2
as analysed using mother wavelet bior-4.4 at level 5 was plotted
versus the number of fractures within the fractured zone. As seen
from this figure, in general, energy level increases as the number of
fractures is increased. Excluding depth interval 2331–2357 m, a linear
relationship exists between number of fractures (fn) and signal energy
(Es). A linear relation is desired which enables us to generalize the
results to other cases more favourably. The linear relation after
discarding the out of range data and applying the minimum sum of
square error method is obtained as follows (see Fig. 8)

Es = 0:2173fn + 0:6447 ð3Þ

having a correlation coefficient of 0.78; which is considered to be a
reasonable value, statistically. Similar results were obtained in other
wells, which leads to a conclusion that using the approach proposed in
this paper, it is possible to detect the fractured zones and the number
of fractures in each zone with a reasonably high accuracy.

8. Conclusion

Despite critical importance of fracture detection in modeling of
fractured reservoirs, limited research has been carried out usingwell logs.
This is perhaps due to lack of any significant responses of well logs to
fractures. This difficulty was tackled in this paper with the fundamental
assumption that high fracture density in a fractured zone could influence
the well log responses. Therefore, it was concluded that studying the low
frequency variation of well logs through the use of wavelet and wavelet
packet techniques, detection of fractured zones should be potentially

possible. As water saturation is expected to increase in water wet
fracturedzones, thewater saturation logwasused to identify the fractured
zones where the image logs were used simultaneously to calibrate the
results. The water saturation log was decomposed using wavelet packet
and Fourier transforms after which the fractured zones were shown to
indicate a good correlation (accuracy of about 64%) with approximated
section of wavelet transform of water saturation log and where this log
shows increased values. The accuracy of the method was increased by
carrying out filtering of the errors corresponding to three different error
categories: falsepositive (FP), falsenegative (FN)anduncertainzones. The
errors in uncertain zonewere reduced through shale volumeorGR logs as
well as fracture and other reservoir properties. In this study the reduction
of FN error was not practically possible, as the uncertain zone in some
wellswaswithin thewater bearing section of the reservoir. Afterfiltering,
the accuracy of the method increased by 5% and became 69%. Finally, a
positive linear correlation was derived between energy signal of
approximated section ofwater saturation log and the number of fractures
in each fractured zone. The proposed method successfully detected the
fractures in four studiedwells of oneof the oilfields in southwest Iran. This
indicates that the approach used in this paper, is promising and can be
extended to act as a robust methodology in fracture detection by further
examination in new fields.
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