29 research outputs found

    pTINCR microprotein promotes epithelial differentiation and suppresses tumor growth through CDC42 SUMOylation and activation

    Get PDF
    Cancer; Mechanisms of diseaseCàncer; Mecanismes de la malaltiaCáncer; Mecanismos de la enfermedadThe human transcriptome contains thousands of small open reading frames (sORFs) that encode microproteins whose functions remain largely unexplored. Here, we show that TINCR lncRNA encodes pTINCR, an evolutionary conserved ubiquitin-like protein (UBL) expressed in many epithelia and upregulated upon differentiation and under cellular stress. By gain- and loss-of-function studies, we demonstrate that pTINCR is a key inducer of epithelial differentiation in vitro and in vivo. Interestingly, low expression of TINCR associates with worse prognosis in several epithelial cancers, and pTINCR overexpression reduces malignancy in patient-derived xenografts. At the molecular level, pTINCR binds to SUMO through its SUMO interacting motif (SIM) and to CDC42, a Rho-GTPase critical for actin cytoskeleton remodeling and epithelial differentiation. Moreover, pTINCR increases CDC42 SUMOylation and promotes its activation, triggering a pro-differentiation cascade. Our findings suggest that the microproteome is a source of new regulators of cell identity relevant for cancer.Work in the Abad lab is supported by VHIO, Fero Foundation, La Caixa Foundation, Asociación Española Contra el Cancer (AECC), La Mutua Foundation and by grants from the Spanish Ministry of Science and Innovation (SAF2015-69413-R; RTI2018-102046-B-I00). M.A. was recipient of a Ramón y Cajal contract from the Spanish Ministry of Science and Innovation (RYC-2013-14747). O.B. is recipient of a FPI-AGAUR fellowship from Generalitat de Catalunya. We also acknowledge funding from grant PGC2018-094091-B-I00 from the Spanish Government

    pTINCR microprotein promotes epithelial differentiation and suppresses tumor growth through CDC42 SUMOylation and activation

    Get PDF
    The human transcriptome contains thousands of small open reading frames (sORFs) that encode microproteins whose functions remain largely unexplored. Here, we show that TINCR lncRNA encodes pTINCR, an evolutionary conserved ubiquitin-like protein (UBL) expressed in many epithelia and upregulated upon differentiation and under cellular stress. By gain- and loss-of-function studies, we demonstrate that pTINCR is a key inducer of epithelial differentiation in vitro and in vivo. Interestingly, low expression of TINCR associates with worse prognosis in several epithelial cancers, and pTINCR overexpression reduces malignancy in patient-derived xenografts. At the molecular level, pTINCR binds to SUMO through its SUMO interacting motif (SIM) and to CDC42, a Rho-GTPase critical for actin cytoskeleton remodeling and epithelial differentiation. Moreover, pTINCR increases CDC42 SUMOylation and promotes its activation, triggering a pro-differentiation cascade. Our findings suggest that the microproteome is a source of new regulators of cell identity relevant for cancer.Acknowledgements: The authors thank VHIO Proteomics, Molecular Oncology and Genomics Core Facilities for technical assistance. We are grateful to Manuel Serrano for providing several reagents, advice and critical discussion on the manuscript. We also thank Alonso García and Raquel Pérez for their help in processing and analyzing digital images, Gemma Serra and Sandra Peiró for their assistance with subcellular fractionation and immunoprecipitation experiments, Sara Arce and Joaquín Mateo for providing several reagents during the development of critical experiments of this manuscript, and Juan Angel Recio for his help with the cSCC cohort. We are immensely grateful to all the members of the Abad lab for generating the know-how for the identification of novel sORFs, for the critical reading on the manuscript and in general for their constant support to this project. Work in the Abad lab is supported by VHIO, Fero Foundation, La Caixa Foundation, Asociación Española Contra el Cancer (AECC), La Mutua Foundation and by grants from the Spanish Ministry of Science and Innovation (SAF2015-69413-R; RTI2018-102046-B-I00). M.A. was recipient of a Ramón y Cajal contract from the Spanish Ministry of Science and Innovation (RYC-2013-14747). O.B. is recipient of a FPIAGAUR fellowship from Generalitat de Catalunya. We also acknowledge funding from grant PGC2018-094091-B-I00 from the Spanish Government

    The number of tree species on Earth

    Get PDF
    One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness. Please note an (erratum/corrigendum) for this article is available via https://www.pnas.org/doi/10.1073/pnas.220278411

    pTINCR microprotein promotes epithelial differentiation and suppresses tumor growth through CDC42 SUMOylation and activation

    Get PDF
    The human transcriptome contains thousands of small open reading frames (sORFs) that encode microproteins whose functions remain largely unexplored. Here, we show that TINCR lncRNA encodes pTINCR, an evolutionary conserved ubiquitin-like protein (UBL) expressed in many epithelia and upregulated upon differentiation and under cellular stress. By gain- and loss-of-function studies, we demonstrate that pTINCR is a key inducer of epithelial differentiation in vitro and in vivo. Interestingly, low expression of TINCR associates with worse prognosis in several epithelial cancers, and pTINCR overexpression reduces malignancy in patient-derived xenografts. At the molecular level, pTINCR binds to SUMO through its SUMO interacting motif (SIM) and to CDC42, a Rho-GTPase critical for actin cytoskeleton remodeling and epithelial differentiation. Moreover, pTINCR increases CDC42 SUMOylation and promotes its activation, triggering a pro-differentiation cascade. Our findings suggest that the microproteome is a source of new regulators of cell identity relevant for cancer

    The number of tree species on Earth

    Get PDF
    One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global groundsourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are 73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness

    The number of tree species on Earth.

    Get PDF
    One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness

    Extracto de Compost como Control del Mildiu Lanoso (Peronospora belbahrii) y Suplemento Nutricional en Albahaca Dulce (Ocimum basilicum)

    No full text
    Growing concern on the use of inorganic fertilizers and pesticides has pushed investigators to find agro-ecological alternatives due to their impact on our environment and agriculture overall. Compost tea is a tool that has proven to be effective in controlling different plant pathogens. The aim of this study was to evaluate its effectiveness in suppressing Peronospora belbahrii, an oomycete responsible for the most common disease on organic basil produced in Zamorano, where no alternatives to fungicides have been found. A compost tea brewer was built. Foliar and foliar + soil applications were evaluated as well as Bacillus subtilis, salicylic acid and peracetic acid in a continuous experiment of eight weeks. Plants were inoculated with the pathogen; treatment applications as well as disease severity evaluations were made weekly and yield was recorded at week 4 and 8. Foliar spraying of compost tea reduced disease severity significantly when compared to the no application control in only one of the eight weeks. Foliar + soil spraying did so in only two of the eight weeks. The other treatments were not different from the control. Foliar + soil spraying of compost tea had significantly higher yields at week 4 with 48.23 ± 6.2 g/plant and higher at week 8, but not significant. The reduced affectivity of the compost tea was attributed, in part, to an elevated level of nutrients during the brewing process allowing high microorganism growth that resulted in fast oxygen consumption which could account for the lower compost tea quality.Ceiba, 2012. Volumen 53(1):17-29Existe una fuerte tendencia hacia las alternativas agroecológicas de los fertilizantes y plaguicidas sintéticos debido al impacto que tienen en el medio ambiente y en la sociedad. El té de compost ha probado ser muy efectivo para controlar algunos patógenos. El objetivo de este estudio fue evaluar su efectividad para suprimir la incidencia de Peronospora belbahrii, un oomiceto causante de la principal enfermedad en albahaca orgánica en Zamorano, Honduras. Se fabricó una máquina para elaborar el té y se evaluaron aplicaciones foliares de este y foliares y al suelo junto con Bacillus subtilis, ácido salicílico y ácido peracético en un experimento de ocho semanas. Se inocularon las plantas con el patógeno, se aplicaron los tratamientos y se midió la incidencia semanal de la enfermedad y el rendimiento en las semanas 4 y 8. El té de compost aplicado foliar difirió en una de los ocho semanas con el testigo, el té aplicado foliar y al suelo fue significativo en dos de las ocho semanas con el testigo y el resto de tratamientos no fueron significativos en ninguna semana. En rendimiento, el té de compost foliar + al suelo fue significativamente mayor (48.2 ± 6.2 g/planta) en las primeras cuatro semanas y mayor en la semana 8, aunque sin diferencias estadísticas. Se atribuye la falta de efectividad del té de compost a los niveles altos de aditivos que causaron excesos de microorganismos lo que causó condiciones anaeróbicas que afectaron la calidad final y su habilidad supresora.Ceiba, 2012. Volumen 53(1):17-2
    corecore