345 research outputs found

    Trophic niche overlap between native freshwater mussels (Order: Unionida) and the invasive Corbicula fluminea

    Get PDF
    Freshwater mussels (Order Unionida) are highly threatened. Interspecific competition for food sources with invasive alien species is considered to be one of the factors responsible for their decline because successful invaders are expected to have wider trophic niches and more flexible feeding strategies than their native counterparts. In this study, carbon (ή13C: 13C/12C) and nitrogen (ή15N: 15N/14N) stable isotopes were used to investigate the trophic niche overlap between the native freshwater mussel species, Anodonta anatina, Potomida littoralis, and Unio delphinus, and the invasive bivalve Corbicula fluminea living in sympatry in the Tua basin (south-west Europe). The species presenting the widest trophic niches were C. fluminea and A. anatina, which indicate that they have broader diets than U. delphinus and P. littoralis. Nonetheless, all the species assimilated microphytobenthos, sediment organic matter, and detritus derived from vascular plants, although with interspecific variability in the assimilated proportions of each source. The trophic niche of the invasive species overlapped with the trophic niche of all the native species, with the extent varying between sites and according to the species. From the three native species analysed, Potomida littoralis may be at a higher risk for competition for food with C. fluminea in the Tua basin, if food sources become limited, because this native mussel presented the narrowest trophic niche across sites and the highest probability of overlapping with the trophic niche of C. fluminea. Given the global widespread distribution of C. fluminea, the implementation of management measures devoted to the control or even eradication of this invasive alien species should be a conservation priority given its potential for competition with highly threatened native freshwater mussels.V.M. and P.C. were supported by doctoral grants SFRH/BD/108298/2015 and SFRH/BD/131814/2017, respectively, from the Portuguese Foundation for Science and Technology—FCT through POPH/FSE funds. FCT also supported M.L.L. under contract (2020.03608.CEECIND). This study was conducted within the project FRESHCO – Multiple implications of invasive species on Freshwater Mussel coextinction processes, supported by FCT and COMPETE funds (contract: PTDC/AGRFOR/1627/2014). This study was also supported by national funds through FCT – Foundation for Science and Technology within the scope of UIDB/04423/2020 and UIDP/04423/2020. We thank Jacinto Cunha for providing Figure 1.info:eu-repo/semantics/publishedVersio

    Darkness visible: reflections on underground ecology

    Get PDF
    1 Soil science and ecology have developed independently, making it difficult for ecologists to contribute to urgent current debates on the destruction of the global soil resource and its key role in the global carbon cycle. Soils are believed to be exceptionally biodiverse parts of ecosystems, a view confirmed by recent data from the UK Soil Biodiversity Programme at Sourhope, Scotland, where high diversity was a characteristic of small organisms, but not of larger ones. Explaining this difference requires knowledge that we currently lack about the basic biology and biogeography of micro-organisms. 2 It seems inherently plausible that the high levels of biological diversity in soil play some part in determining the ability of soils to undertake ecosystem-level processes, such as carbon and mineral cycling. However, we lack conceptual models to address this issue, and debate about the role of biodiversity in ecosystem processes has centred around the concept of functional redundancy, and has consequently been largely semantic. More precise construction of our experimental questions is needed to advance understanding. 3 These issues are well illustrated by the fungi that form arbuscular mycorrhizas, the Glomeromycota. This ancient symbiosis of plants and fungi is responsible for phosphate uptake in most land plants, and the phylum is generally held to be species-poor and non-specific, with most members readily colonizing any plant species. Molecular techniques have shown both those assumptions to be unsafe, raising questions about what factors have promoted diversification in these fungi. One source of this genetic diversity may be functional diversity. 4 Specificity of the mycorrhizal interaction between plants and fungi would have important ecosystem consequences. One example would be in the control of invasiveness in introduced plant species: surprisingly, naturalized plant species in Britain are disproportionately from mycorrhizal families, suggesting that these fungi may play a role in assisting invasion. 5 What emerges from an attempt to relate biodiversity and ecosystem processes in soil is our extraordinary ignorance about the organisms involved. There are fundamental questions that are now answerable with new techniques and sufficient will, such as how biodiverse are natural soils? Do microbes have biogeography? Are there rare or even endangered microbes

    Recent experimental results in sub- and near-barrier heavy ion fusion reactions

    Full text link
    Recent advances obtained in the field of near and sub-barrier heavy-ion fusion reactions are reviewed. Emphasis is given to the results obtained in the last decade, and focus will be mainly on the experimental work performed concerning the influence of transfer channels on fusion cross sections and the hindrance phenomenon far below the barrier. Indeed, early data of sub-barrier fusion taught us that cross sections may strongly depend on the low-energy collective modes of the colliding nuclei, and, possibly, on couplings to transfer channels. The coupled-channels (CC) model has been quite successful in the interpretation of the experimental evidences. Fusion barrier distributions often yield the fingerprint of the relevant coupled channels. Recent results obtained by using radioactive beams are reported. At deep sub-barrier energies, the slope of the excitation function in a semi-logarithmic plot keeps increasing in many cases and standard CC calculations over-predict the cross sections. This was named a hindrance phenomenon, and its physical origin is still a matter of debate. Recent theoretical developments suggest that this effect, at least partially, may be a consequence of the Pauli exclusion principle. The hindrance may have far-reaching consequences in astrophysics where fusion of light systems determines stellar evolution during the carbon and oxygen burning stages, and yields important information for exotic reactions that take place in the inner crust of accreting neutron stars.Comment: 40 pages, 63 figures, review paper accepted for EPJ

    New Strategies in Sport Nutrition to Increase Exercise Performance.

    Get PDF
    Despite over 50 years of research, the field of sports nutrition continues to grow at a rapid rate. Whilst the traditional research focus was one that centred on strategies to maximize competition performance, emerging data in the last decade has demonstrated how both macronutrient and micronutrient availability can play a prominent role in regulating those cell signalling pathways that modulate skeletal muscle adaptations to endurance and resistance training. Nonetheless, in the context of exercise performance, it is clear that carbohydrate (but not fat) still remains king and that carefully chosen ergogenic aids (e.g. caffeine, creatine, sodium bicarbonate, beta-alanine, nitrates) can all promote performance in the correct exercise setting. In relation to exercise training, however, it is now thought that strategic periods of reduced carbohydrate and elevated dietary protein intake may enhance training adaptations whereas high carbohydrate availability and antioxidant supplementation may actually attenuate training adaptation. Emerging evidence also suggests that vitamin D may play a regulatory role in muscle regeneration and subsequent hypertrophy following damaging forms of exercise. Finally, novel compounds (albeit largely examined in rodent models) such as epicatechins, nicotinamide riboside, resveratrol, ÎČ-hydroxy ÎČ-methylbutyrate, phosphatidic acid and ursolic acid may also promote or attenuate skeletal muscle adaptations to endurance and strength training. When taken together, it is clear that sports nutrition is very much at the heart of the Olympic motto, Citius, Altius, Fortius (faster, higher, stronger)

    Association of a novel mutation in the plasmodium falciparum chloroquine resistance transporter with decreased piperaquine sensitivity

    Get PDF
    Background. Amplified copy number in the plasmepsin II/III genes within Plasmodium falciparum has been associated with decreased sensitivity to piperaquine. To examine this association and test whether additional loci might also contribute, we performed a genome-wide association study of ex vivo P. falciparum susceptibility to piperaquine. Methods. Plasmodium falciparum DNA from 183 samples collected primarily from Cambodia was genotyped at 33 716 genomewide single nucleotide polymorphisms (SNPs). Linear mixed models and random forests were used to estimate associations between parasite genotypes and piperaquine susceptibility. Candidate polymorphisms were evaluated for their association with dihydroartemisinin- piperaquine treatment outcomes in an independent dataset. Results. Single nucleotide polymorphisms on multiple chromosomes were associated with piperaquine 90% inhibitory concentrations (IC90) in a genome-wide analysis. Fine-mapping of genomic regions implicated in genome-wide analyses identified multiple SNPs in linkage disequilibrium with each other that were significantly associated with piperaquine IC90, including a novel mutation within the gene encoding the P. falciparum chloroquine resistance transporter, PfCRT. This mutation (F145I) was associated with dihydroartemisinin-piperaquine treatment failure after adjusting for the presence of amplified plasmepsin II/III, which was also associated with decreased piperaquine sensitivity. Conclusions. Our data suggest that, in addition to plasmepsin II/III copy number, other loci, including pfcrt, may also be involved in piperaquine resistance

    Measurement of the tau lepton lifetime

    Get PDF

    Limit on Bs0B^0_s oscillation using a jet charge method

    Get PDF
    A lower limit is set on the B_{s}^{0} meson oscillation parameter \Delta m_{s} using data collected from 1991 to 1994 by the ALEPH detector. Events with a high transverse momentum lepton and a reconstructed secondary vertex are used. The high transverse momentum leptons are produced mainly by b hadron decays, and the sign of the lepton indicates the particle/antiparticle final state in decays of neutral B mesons. The initial state is determined by a jet charge technique using both sides of the event. A maximum likelihood method is used to set a lower limit of \, \Delta m_{s}. The 95\% confidence level lower limit on \Delta m_s ranges between 5.2 and 6.5(\hbar/c^{2})~ps^{-1} when the fraction of b quarks from Z^0 decays that form B_{s}^{0} mesons is varied from 8\% to 16\%. Assuming that the B_{s}^{0} fraction is 12\%, the lower limit would be \Delta m_{s} 6.1(\hbar/c^{2})~ps^{-1} at 95\% confidence level. For x_s = \Delta m_s \, \tau_{B_s}, this limit also gives x_s 8.8 using the B_{s}^{0} lifetime of \tau_{B_s} = 1.55 \pm 0.11~ps and shifting the central value of \tau_{B_s} down by 1\sigma
    • 

    corecore